Some Features of Doping of Nano–Graphite in Natural Coir Fibre Epoxy Composites

Nanokompozit polimerlerin, biyomedikal mühendislik, elektronik yapı mühendisliği ve daha birçok çeşitli sektör de; bilim ve teknolojideki yeni gelişmeler nedeniyle doğrudan/dolaylı kullanımları girişimde bulunulmuştur. Biz bu araştırmada, doğal hindistan cevizi lifi takviyeli polimer kompozitlerinde nano-grafitin katkısını kullandık. Kullanılan kompozit numuneleri, ağırlık fraksiyonu ile bir epoksi reçine matrisinde% 45 doğal hindistan cevizi lifi ve% 3.2 nano-grafit (N-G) idi. Doğal hindistan cevizi lifi içindeki % nano-grafit ağırlığının üzerinde doping yaptığımız da gerilme mukavemetinin kabaca % 45-50 ve geri kalanının mekanik özelliklerin ise ortalama 2-3 kat arttığını bulduk. Son olarak, SEM analizi ile mevcut lif elyafı kompozit numunelerinde nano grafitin iyi bir dağılımını ortaya koyduk.

Some Features of Doping of Nano–Graphite in Natural Coir Fibre Epoxy Composites

An attempt has been made to find some direct/indirect uses of nonocomposite polymers in varios sectors such as; biomedical engineering, electronics, structural engineering and many more due new advancement of science and technology. In the present research work, we used the doping of nano-graphite in the natural coir fibre reinforced polymer composites. The used samples of composites were 45 % of natural coir fibre and 3.2 % of nano-graphite (N-G) in an epoxy resin matrix by weigth fraction. We find that on doping the above % weight of nano-graphite in the natural coir fibre, the tensile strength roughly increased by 45-50 % and the rest of the mechanical properties by 2-3 times on the average. And finally, the SEM analysis revealed a good dispersion of nanographite in the present samples of composite of coir fibre.

___

  • Ray, D. (2005). Natural Fibres, Biopolymers and Biocomposites. Thermoset Biocomposite in Mohanty. Taylor & Francis.
  • Pothan, L. A., Oommen, Z., & Thomas, S. (2003). Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology, 63(2), 283-293.
  • Turtle, M. E. (2014) Structural Analysis of Polymeric Composite Materials, New York: Marcel Dekker Inc. 1-41.
  • Brahim, S. B., & Cheikh, R. B. (2007). Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Composites Science and Technology, 67(1), 140-147.
  • Alveera K., Shrish J., Ayaz M.A., Abd El-Khalek A. M. (2013). Synthesis and characterization of chemically treated fibre and its reinforced epoxy polymer composites, Paper submitted to conference “SIECPC-2013” to be held at Riyadh, 27-30 April 2013, Saudi Arabia. (http:www.easychair.org/conference/?conf=siecpc2013)
  • Khan, A., Mohammad, A., Shirish, J., & Lyashenko, V. (2016). Synthesis of Alumina Fibre by Annealing Method using Coir Fibre. American Chemical Science Journal, 15(2), 1-7.
  • Khan, A., Joshi, S., Ahmad, M. A., & Lyashenko, V. (2015). Some effect of Chemical treatment by Ferric Nitrate salts on the structure and morphology of Coir Fibre Composites. Advances in Materials Physics and Chemistry, 5(1), 39-45.
  • Alveera Khan, M. Ayaz Ahmad, Shrish J., Abd. El-Khalek A. M. (2013). Study of mechanical and electrical behavior of chemically treated coir fibre reinforced epoxy composites, Int. J. of Multidispl. Research & Advcs. in Engg. (IJMRAE), 5(2), 171-180.
  • Khan, A., Ahmad, M. A., Joshi, S., & Al Said, S. A. (2014). Abrasive wear behavior of chemically treated coir fibre filled epoxy polymer composites. American Journal of Mechanical Engineering and Automation, 1(1), 1-5.
  • Khan, A., Ahmad, M. A., & Joshi, S. (2015). A systematic study for electrical properties of chemically treated coir fiber reinforced epoxy composites with ANN model. International Journal of Science and Research (IJSR), 4(1), 410-414.
  • Khan A., Ahmad, M. A., Joshi, S., Lyashenko, V. (2015). Dielectric and Electrical Characterization Study of Synthesized Alumina Fibre Reinforced Epoxy Composites. Elixir Crystal, 87, 35801-35805.
  • Kim, B. C., & Park, S. W. (2008). Fracture toughness of the nano-particle reinforced epoxy composite. Composite structures, 86(1-3), 69-77.
  • Sarikavakli, N., Mustafa, S. K., & Ahmad, M. A. (2017). Evolution of Thermo-Mechanical Properties of Aluminium-Silicon Alloy (Al-1wt% Si). American Journal of Materials Synthesis and Processing, 2(5), 61-64.
  • Sarikavakli, N., Ahmad, M. A., Dobra, R., Pasculescu, D. (2016). Book Chapter: Nano-Technology for a Novel Photon Detector Systems” Vol. IV (2016), pp. 51-54. In the conference; Smart Applications & Technologies for Electronic Engineering, SATEE 2016; ISBN: 978-606-613-128-5; Romanian Chapter of IEEE Instrumentation and Measurements Society, University of Alba Iulia.
  • Tarranum, N., Ahmad, M. A., Sarikavakli, N., Khan, A. (2016). Soft Computing Technique in Nano-Technology to Improve the Thermo-Mechanical Properties for Aluminum – Silicon Alloy”, 4th International research and practice conference Nanotechnology and Nanomaterıals Nano-2016 August 24 - 27, 2016, Ivan Franko National University of Lviv, Lviv, Ukraine.
  • Sarıkavaklı, N., Ahmad, M. A., Tarannum, N. (2016). A Novel Photon Detector Systems Produced By Carbon Nanotubes, 28th of the National Chemistry Congresses, 15–21 August 2016, Mersin University.
  • Fidelus, J. D., Wiesel, E., Gojny, F. H., Schulte, K., & Wagner, H. D. (2005). Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 36(11), 1555-1561.
  • Gojny, F. H., Wichmann, M. H., Fiedler, B., Bauhofer, W., & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36(11), 1525-1535.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
  • Kim, S., Seo, J., & Drzal, L. T. (2010). Improvement of electric conductivity of LLDPE based nanocomposite by paraffin coating on exfoliated graphite nanoplatelets. Composites Part A: Applied Science and Manufacturing, 41(5), 581-587.
  • Wang, L., Hong, J., & Chen, G. (2010). Comparison study of graphite nanosheets and carbon black as fillers for high density polyethylene. Polymer Engineering & Science, 50(11), 2176-2181.
  • COIR BOARD, Cochin, 31st March 2012, Executive Summary STATUS OF COIR INDUSTRIES IN INDIA.
  • Obele, C., Ishidi, E. (2015). Mechanical Properties of Coir Fiber Reinforced Epoxy Resin Composites for Helmet Shell, Industrial Engineering Letters, 5(7), 67-74.
  • Vassileva, E., & Friedrich, K. (2006). Epoxy/alumina nanoparticle composites. II. Influence of silane coupling agent treatment on mechanical performance and wear resistance. Journal of applied polymer science, 101(6), 4410-4417.
  • A perfect standard; ASTM D3039 tensile testing standard @ http://www.intertek.com/polymers/tensile-testing/matrix-composite/
  • International Organization for Standardization (ISO); ASTM standard EN ISO 14125 (1998)/ (subcommittee SC 13, Composites and reinforcement fibres) https://www.iso.org/obp/ui/#iso:std:iso:14125:ed-1:v1:en
  • Schadler L. S., Giannaris S. C., Ajayan P. M. (1998). Mechanical properties of carbon nano-tubes based polymer composites. Appl. Phys. Lett. 73, 38-42.
  • Elhamnia, M., Motlagh, G. H., Abbasian, Z., Godarzi, R. (2014). The effect of graphene chain grafting on the mechanical properties of polymer/grapheme nanocomposites, “Scientific Cooperations International Workshops on Engineering Branches” 8-9 August 2014, Koc University, ISTANBUL/TURKEY.
  • Sarikavakli, N., Ahmad, M. A., Mustafa, S. K. (2018). “Conference PIRM-VI’ 2018, Faculty of Sciences and technologies”, Abdelmalek Essaadi University, 7-9 May 2018, Tangier, MOROCCO.
  • Lyashenko, V. V., Ahmad, M. A., Sotnik, S., Deinko, Z., Khan, A. (2018). Defects of Communication Pipes from Plastic in Modern Civil Engineering, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 8(1), 253-262.