Sodyum Sülfat ve Sodyum Klorür Çözeltilerinin Sertleşmiş Harçların Dayanım ve Dayanıklılıkları Üzerindeki Kısa Süreli Etkileri

Sodyum sülfat ve sodyum klorür çözeltilerinin, sertleşmiş betonun dayanım ve dayanıklılığı üzerindeki uzun süreli etkilerini belirlemek için yapılan çalışmaların sayısının fazla olmasına rağmen, bu çözeltilerin sertleşmiş betonun dayanım ve dayanıklılığı üzerindeki kısa süreli etkilerini belirlemek için yapılan çalışmaların sayısı ve kapsamı oldukça dardır. Kapsamı dar olan bu konuda, sodyum sülfat ve sodyum klorür çözeltilerinin kısa süreli olarak sertleşmiş betonun dayanım ve dayanıklılığına ne yönde etki edeceğini belirlemek için bu deneysel çalışma yapılmıştır. Bu çalışma kapsamında, 16 grup sertleşmiş harç numunesinin 4 grubu donatılı ve 12 grubu donatısız olarak üretilmiştir. İki farklı karışım (standart harç ve özel harç) dikkate alınarak üretilen bu numuneler hava, su, sodyum sülfat ve sodyum klorür çözeltisinde kür edildikten sonra teste tabi tutulmuşlardır. Üretilen numunelerin 12 grubu (bunlar donatısız olarak üretilmiş numuneler) üzerinde eğilme ve basınç dayanımı tayini, birim ağırlık değişimi, hacimsel ve kılcal su emme kapasitesi tayini, ultra ses hızı ve boy değişimi tayini deneyleri, kalan 4 grup numune (bunlar donatılı olarak üretilmiş numuneler) üzerinde ise korozyon aktivitesi testi yapılmıştır. Yapılan deneyler sonucunda elde edilen verilere göre, kısa süreli olarak sodyum sülfat ve sodyum klorür çözeltilerine maruz kalan ve yüksek su/çimento oranına sahip sertleşmiş harç numunelerin dayanım ve dayanıklılık karakteristiklerinin normal su/çimento oranına sahip ve bu çözeltilere maruz kalan veya kalmayan numunelerden daha az olduğu görülmüştür.

Short-term Effects of Sodium Sulfate and Sodium Chloride Solutions on The Strength and Durability Properties of Hardened Mortars

This study provides an insight for investigating the short-term effects of sodium sulfate and sodium chloride concentrations on the strength and durability characteristics of hardened mortars. For this aim, a comprehensive experimental campaign was conducted on 16 groups of mortar specimens, which were produced with and without reinforcing bars and cured in different environments such as air, water, sodium sulfate and sodium chloride solution. The 12 groups of the specimens, which were produced without reinforcing bars, were then subjected to flexural strength, compressive strength, unit weight, volumetric water absorption, capillary water absorption, ultrasound velocity and length change tests weekly between 7th and 77th days. The remain 4 groups of the specimens, which were produced with reinforcing bars, were then subjected to corrosion activity tests. The destructive and nondestructive test results showed that the specimens were produced with high water/cement ratio and then exposed to NaCl and Na2SO4 concentration has lower strength and durability characteristics than that of the specimens produced with normal water/cement ratio were exposed or not exposed to NaCl and Na2SO4 concentration.

___

  • Akoz, F., Turker, F., Koral, S. and Yuzer, N. 1999. Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume. Cement and Concrete Research, 29(4), 537-544.
  • Al-Dulaijan, S. U., Maslehuddin, M., Al-Zahrani, M. M., Sharif, A. M., Shameem, M. and Ibrahim, M. 2003. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composite, 25(4-5), 429-437.
  • Andrade, C. and Alonso, C. 2001. On-site measurements of corrosion rate of reinforcements. Construction and Building Materials, 15, 141-145.
  • Bal, I. E., Gulay, F. G. and Tezcan, S. 2008. P25 scoring method for a preliminary assessment of collapse vulnerability of reinforced concrete buildings. Proceedings, The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China, 14 WCEE, pp. 219-226.
  • Baradan, B. and Aydın, S. 2013. Durability of concrete. Journal of Ready Mixed Concrete Association of Turkey, pp.54-68. Boutiba, A., Chaid, R., Molez, L. and Jauberthie, R. 2015.
  • Resistant to sulphate attack of high performance fibre concrete with the addition of slag. Cement Wapno Beton, 82, 295-303.
  • Brown, P. W. and Badger, S. 2000. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack. Cement and Concrete Research, 30(10), 1535-1542.
  • Czapik, P. and Owsiak, Z. 2016. Effect of zeolite exposed to ionexchange with ammonium chloride on reaction of sodium and potassium hydroxides with gravel aggregate. Cement Wapno Beton, 2, 79-85.
  • Dehwah, H. A. F., Maslehuddin, M., and Austin, S. A. 2002. Effect of cement alkalinity on pore solution chemistry and chloride-induced reinforcement corrosion. ACI Materials Journal, 99(3), 227-233.
  • Elsener, B. and Bohni, H. 1992. Electrochemical methods for the inspection of reinforcement corrosion in concrete structuresfield experience. Materials Science Forum, 111-112, 635-647.
  • Elsener, B. 2002. Macro cell corrosion of steel in concreteimplications for corrosion monitoring. Cement and Concrete Composites, 24(1), 65-72.
  • Elsener, B., Andrade, C., Gulikers, J., Polder, R. and Raupach, M. 2003. Half-cell potential measurements-potential mapping on reinforced concrete structures. Materials and Structures, 36(7), 461-471.
  • Fang, C. Q., Lundgren, K., Plos, M., Gylltoft, K. 2006. Bond behaviour of corroded reinforcing steel bars in concrete. Cement and Concrete Research, 36(10), 1931-1938.
  • Glass, G. K., Reddy, B., Buenfeld, N. R. 2000. The participation of bound chloride in passive film breakdown on steel in concrete. Corrosion Science, 42(11), 2013-2021.
  • Gollob, R. S. and Taylor, H. F. W. 1994. Sulfate attack on hardened cement paste. Cement and Concrete Research, 24, 735-742.
  • Grabowska, E. and Malolepszy, J. 2016. Effect of binder containing clinoptilolite on resistance of mortars to sulphate attack. Cement Wapno Beton, 2, 106-111.
  • Han, S. H. 2007. Influence of diffusion coefficient on chloride ion penetration of concrete structure. Construction and Building Materials, 21, 370-378.
  • Hansson, C. M., Frolund, T. and Markussen, J. B. 1985. The effect of chloride cation type on the corposion of steel in concrete by chloride salts. Cement and Concrete Research, 15, 65-73.
  • Hekal, E. E., Kishar, E. and Mostafa, H. 2002. Magnesium sulfate attack on hardened blended cement pastes under different circumstances. Cement and Concrete Research, 32(9), 1421- 1427
  • Hussain, S. E., Rasheeduzzafar and AI-Saadoun, S. S. 1994. Influence of sulfates on chloride binding in cements. Cement and Concrete Research, 21(5), 777-794.
  • Jasniok, T., Slomka-Slupik, B. and Zybura, A. 2014. The concrete reinforcement chloride corrosion immediately after its initiation. Cement Wapno Beton, 3, 158-165.
  • Jones, R. Facaoaru, I. 1969. Recommendations for testing concrete by the ultrasonic pulse method, Mat. And Str. (RILEM) 2 (10), 275-284.
  • Kunther, W., Lothenbach, B. and Scrivener, K. 2013. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions. Cement and Concrete Research, 44, 77-86.
  • Kurdowski, W. 2004. "The protective layer and decalcification of C-S-H in the mechanism of chloride corrosion of cement paste. Cement and Concrete Research, 34(9), 1555-1559.
  • Lee, H. S., Noguchi, T. and Tomosawa, F. 2002. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion. Cement and Concrete Research, 32(8), 1313-1318.
  • Liu, Y. and Weyers, R. E. 1998. Modeling the time-to-corrosion cracking in chloride contamined reinforced concrete structures. ACI Material Journal, 95(6), 675-681.
  • Mansfeld, F. 1981. Recording and analysis of AC impedance data for corrosion studies. Corrosion, 37(5), 301-307.
  • Neville, A. 1995. Chloride attack of reinforced concrete: an overview. Materials and Structures, 28, 63-70.
  • Neville, A. 2004. The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275-1296.
  • Page, C. L., Holden, W. R. and Short, N. R. 1983. The Influence of Chlorides and Sulphates on Durability, Corrosion of Reinforcement in Concrete Construction. (ed. A.P. Crane), Ellis, Horwood, Chichester. pp. 143-150.
  • Pack, S. W., Jung, M. S., Song, H. W., Kim, S. H. and Ann, K. Y. 2010. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cement and Concrete Research, 40(2), 302-312.
  • Piasta, W., Budzynski, W. and Gora, J. 2011. The effect of corrosion on the properties of fifty years old reinforced concrete pillars. Cement Wapno Beton, 6, 342-348.
  • Rasheeduzzafar, Alamoudi, O. S. B., Abduljauwad, S. N. and Maslehuddin, M. 1994. Magnesium-sodium sulfate attack in plain and blended cements. J. Material of Civil Eng., 6(2), 201-222.
  • Sirisawat, I., Saengsoy, W., Baingam, L. and Krammart, P. 2014. Durability and testing of mortar with inter-ground fly ash and limestone cements in sulfate solutions. Construction and Building Materials, 64, 39-46.
  • Song, H. W., Pack, S. W. and Ann, K. Y. 2009. Probabilistic assessment to predict the time to corrosion of steel in reinforced concrete tunnel box exposed to sea water. Construction and Building Materials, 23(10), 3270-3278.
  • Tosun, K., Felekoglu, B., Baradan, B. and Altun, I. A. 2009. Effects of limestone replacement ratio on the sulfate resistance of Portland limestone cement mortars exposed to extraordinary high sulfate concentrations. Construction and Building Materials, 23(7), 2534-2544.
  • TS EN 197-1. 2002. This standard describes the method of measuring the pozzolanicity of pozzolanic cements. Turkish Standards Institute, Ankara, Turkey (2002).
  • Uyanik, O. and Tezcan, S. 2012. Beton dayanımının ultrasonik yöntemle tayini. Jeofizik Bülteni, Kasım, 41-45.
  • Xiong L. X. and Yu, L. 2015. Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions. Journal of Central South University, 22(3), 1096-1103.
  • Valls, S. and Vazquez, E. 2001. Accelerated carbonation of sewage sludge-cement-sand mortars and its environmental impact. Cement and Concrete Research, 31(9), 1271-1276.
  • Zhu, J., Cao, Y. H. and Chen, J. Y. 2013. Study on the evolution of dynamic mechanic's properties of cement mortar under sulfate attack. Construction and Building Materials, 43, 286- 292.
  • Zuquan, J., Wei, S., Yunsheng, Z., Jinyang, J. and Jianzhong, L. 2007. Interaction between sulfate and chloride solution attack of concretes with and without fly ash. Cement and Concrete Research, 37(8), 1223-1232.