Seramik Nanotozların Fizikokimyasal Karakterizasyonu

Nanopartikül içeren çalışmalardaki tutarsız sonuçların oluşumunda nanomalzemelerin nasıl tanımlanacağı konusunda süregelen belirsizliklere ek olarak başta örnek hazırlama ve fizikokimyasal karakterizasyon olmak üzere nano-yapılı sistemlerin analizlerine ilişkin stratejilerin farklı nanopartiküller için spesifik olarak bilinmemesi ve uygulanmaması gibi etmenler rol oynamaktadır. Bu çalışmada dental uygulamalarda sıklıkla kullanılan kalsiyum fostat yapılı seramik nanotozların fizikokimyasal karakterizasyonuna ilişkin teknik hususların tespit edilmesi amaçlanmıştır. Bu nanopartiküller Taramalı Elektron Mikroskobu (SEM), Dinamik Işık Saçılımı (DLS), Brunauer, Emmet ve Teller (BET), X-Işınları Kırınımı (XRD) ve Termogravimetrik Analiz ve Differansiyel Termal Analiz (TGA/DTA) teknikleri yardımıyla detaylı olarak karakterize edilmiştir. SEM ve DLS boyut analizleri incelendiğinde nanopartiküllerin homojen olmayan bir boyut dağılımına sahip olduğu anlaşılmaktadır. BET yüzey analizi daha küçük parçacık boyutuna sahip nanopartiküllerin daha yüksek yüzey alanına sahip olduğunu doğrulamıştır. Zeta potansiyel ölçümleri nanopartiküllerin nötr pH’da negatif potansiyele sahip olduğunu (< -16 mV) ancak bu değerin partiküllerin stabil olarak kabul edildiği -30 mV’den az olması dolayısıyla dağılımlarının kararlı olmadığını ortaya koymuştur. TGA analizi yapılarak nanopartiküllerin 900 C’ye kadar dayanıklı olduğu gözlenmiştir. Elde edilen XRD pikleri nanopartiküllere ait karakteristik piklerdir ve literatür ile uyumludur. Ölçülen BET yüzey alanı değerleri tedarikçi tarafından sağlanan değerlerden 2─3 kat daha fazladır. Tüm bu ölçümler nanopartiküllerin karakteristik özelliklerinin belirlenmesinde tedarikçinin verilerine bağlı kalınmamasının ve detaylı karakterizasyon yöntemlerine başvurulmasının gerekliliğini ortaya koymuştur.

Physicochemical Characterization of Ceramic Nanopowders

Inconsistent results are often reported in studies involving nanoparticles. Factors contributing to these inconsistencies include regional and sectoral differences in how nanoparticle-containing materials are defined, as well as lack of standardization of experimental procedures and techniques involved in the preparation and characterization of nanoparticles. The aim of this study is to highlight the technical issues related to the physicochemical characterization of three different calcium phosphate-based ceramic nanopowders that are frequently used in dental applications. These three nanopowders were characterized in detail using different techniques such as Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Brunauer, Emmet and Teller (BET), X-Ray Diffraction (XRD) and Thermogravimetric Analysis (TGA). The results of SEM and DLS particle sizing showed that all three ceramic nanoparticles had heterogeneous size distribution. BET analysis confirmed that ceramic nanoparticles with smaller particle size had relatively larger surface area. Zeta potential measurements revealed that nanoparticles were negatively charged at neutral pH but the observed negativity (< 20 mV) was not high enough to achieve colloidal stability. TGA analysis revealed that nanoparticles were thermally stable up around 900 oC. The XRD pattern of nanoparticles were compatible with the literature. Measured BET surface area values were 2─3 times greater than surface area values provided by the supplier. Overall, these results highlighted the importance of carrying out detailed physicochemical characterization of nanoparticles and not just relying on the supplier’s data.

___

  • Bordea, I. R., Candrea, S., Alexescu, G. T., Bran, S., Băciuț, M., Băciuț, G., . . . Todea, D. A. (2020). Nano-hydroxyapatite use in dentistry: A systematic review. Drug metabolism reviews, 52(2), 319-332.
  • Chang, B.-S., Hong, K.-S., Youn, H.-J., Ryu, H.-S., Chung, S.-S., & Park, K.-W. (2000). Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 21(12), 1291-1298.
  • Chen, L., Mccrate, J. M., Lee, J. C., & Li, H. (2011). The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology, 22(10), 105708.
  • D’Amato, R., Falconieri, M., Gagliardi, S., Popovici, E., Serra, E., Terranova, G., & Borsella, E. (2013). Synthesis of ceramic nanoparticles by laser pyrolysis: from research to applications. Journal of analytical and applied pyrolysis, 104, 461-469.
  • Ebrahimi, M., Botelho, M., Lu, W., & Monmaturapoj, N. (2019). Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering. Journal of Biomedical Materials Research Part A, 107(8), 1654-1666.
  • Fathian, Z., Maleki, A., & Niroumand, B. (2017). Synthesis and characterization of ceramic nanoparticles reinforced lead-free solder. Ceramics International, 43(6), 5302-5310.
  • Hartmann, N. B., Jensen, K. A., Baun, A., Rasmussen, K., Rauscher, H., Tantra, R., . . . Riego Sintes, J. M. (2015). Techniques and protocols for dispersing nanoparticle powders in aqueous media—Is there a rationale for harmonization? Journal of Toxicology and Environmental Health, Part B, 18(6), 299-326.
  • He, L.-H., Standard, O. C., Huang, T. T., Latella, B. A., & Swain, M. V. (2008). Mechanical behaviour of porous hydroxyapatite. Acta Biomaterialia, 4(3), 577-586.
  • Karakus, C. O., & Winkler, D. A. (2021). Overcoming roadblocks in computational roadmaps to the future for safe nanotechnology. Nano Futures, 5(2), 022002.
  • Khandan, A., Nassireslami, E., Saber-Samandari, S., & Arabi, N. (2020). Fabrication and characterization of porous bioceramic-magnetite biocomposite for maxillofacial fractures application. Dental Hypotheses, 11(3), 74.
  • Lynch, I., Weiss, C., & Valsami-Jones, E. (2014). A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano today, 9(3), 266-270.
  • Ming, W., Jiang, Z., Luo, G., Xu, Y., He, W., Xie, Z., . . . Li, L. (2022). Progress in Transparent Nano-Ceramics and Their Potential Applications. Nanomaterials, 12(9), 1491.
  • Moreno-Vega, A.-I., Gomez-Quintero, T., Nunez-Anita, R.-E., Acosta-Torres, L.-S., & Castaño, V. (2012). Polymeric and ceramic nanoparticles in biomedical applications. Journal of Nanotechnology, 2012.
  • Oksel Karakus, C., Bilgi, E., & Winkler, D. A. (2021). Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs. Nanotoxicology, 15(3), 331-351.
  • Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein journal of nanotechnology, 6(1), 1769-1780.
  • Wang, B., Wang, C., Yu, X., Cao, Y., Gao, L., Wu, C., . . . Zou, Z. (2022). General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nature Synthesis, 1(2), 138-146.
  • Winkler, D. A., Mombelli, E., Pietroiusti, A., Tran, L., Worth, A., Fadeel, B., & McCall, M. J. (2013). Applying quantitative structure–activity relationship approaches to nanotoxicology: current status and future potential. Toxicology, 313(1), 15-23.
  • Wu, J., Ling, C., Ge, A., Jiang, W., Baghaei, S., & Kolooshani, A. (2022). Investigating the performance of tricalcium phosphate bioceramic reinforced with titanium nanoparticles in friction stir welding for coating of orthopedic prostheses application. Journal of Materials Research and Technology, 20, 1685-1698.
  • Zare, E. N., Zheng, X., Makvandi, P., Gheybi, H., Sartorius, R., Yiu, C. K., . . . Varma, R. S. (2021). Nonspherical Metal‐Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small, 17(17), 2007073.
  • Zhao, Y., Zhang, Z., Pan, Z., & Liu, Y. (2021). Advanced bioactive nanomaterials for biomedical applications. Paper presented at the Exploration.