Robotik Aktüatörde Piezoelektrik Malzemelerin ve Şekil Hatırlamalı Alaşımların Gelişimi

Teknolojik Gelişmeler içinde, yeni bir malzeme grubu olan, fonksiyonel akıllı malzemelere yüksek oranda bir talep vardır. Bu malzemeler geleneksel malzemelerin işlevleri dışında, aktüatör (harekete geçirici), sensör, kontrol sistemleri ve robotik sistemlerinde kullanılırlar ve Bunlardan en önemli iki tanesi; piezoelektrik malzemeler ve şekil hatırlamalı alaşımlardır. Bu derlemede, şekil hatırlamalı alaşımlar (ŞHA) ve piezoelektrik malzemelerin aktüatör sistemlerini inceleyen genel bir bakış içerir. ŞHA lar ve piezoelektrik malzemelerin herbirinin teorik özellikleri detaylı bir şekilde izah edildi. Her iki sistemin farklı çeşitleri değerlendirildi. Robotik alandaki aktüatör tabanlı ŞHA ve pizeoelektrikler geniş bir şekilde incelendi. Bu sistemlerin karşı karşıya kaldığı bazı zayıflıklar ve zorluklar literatürdeki son çalışmalar ile tartışılmıştır.

The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator

There is a high demand for functional smart materials, especially for new material groups in advanced Technologies. These materialsare used in the actuator, sensor, control systems, and robotic systems, in addition, they can be hybridized with traditional material tocreate a particular function. Piezoelectric materials and shape memory alloys are the most important families among these groups.This review includes an overview of shape memory alloys (SMAs) and piezoelectric material actuator systems in terms of roboticapplications. The theoretical background of each SMAs and piezoelectric materials is well explained. Different types of each systemare interpreted. Using actuator-based SMAs and piezoelectricity in the robotic area is extensively overviewed. Some weaknesses andchallenges facing such systems have discussed through recent studies in the literature.

___

  • Addington, M., & Schodek, D. (2012). Smart Materials and Technologies in Architecture: For the Architecture and Design Professions: Routledge.
  • Advincula, A. P., & Song, A. (2007). The role of robotic surgery in gynecology. Current Opinion in Obstetrics and Gynecology, 19(4), 331-336.
  • Ahmadi, A., Mahdavian, M., Rad, N. F., Yousefi-Koma, A., Alidoost, F., & Bazrafshani, M. A. (2015). Design and fabrication of a Robotic Hand using shape memory alloy actuators. Paper presented at the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM).
  • Alaneme, K. K., & Okotete, E. A. (2016). Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 19(3), 1582- 1592.
  • Arber, W. (2009). The impact of science and technology on the civilization. Biotechnology advances, 27(6), 940-944.
  • Astudillo, J. A., Sporn, E., Bachman, S., Miedema, B., & Thaler, K. (2009). Transgastric cholecystectomy using a prototype endoscope with 2 deflecting working channels (with video). Gastrointestinal endoscopy, 69(2), 297-302.
  • Aydoğdu, Y., Kök, M., Dağdelen, F., Aydoğdu, A., Turabi, A. S., & Karaca, H. E. (2016). The effects of thermal procedure on transformation temperature, crystal structure and microstructure of Cu-Al-Co shape memory alloy. Paper presented at the Journal of Physics: Conference Series.
  • Balamurugan, V., & Narayanan, S. (2008). A piezolaminated composite degenerated shell finite element for active control of structures with distributed piezosensors and actuators. Smart materials and Structures, 17(3), 035031.
  • Bennett, J., Mecrow, B., Atkinson, D., Maxwell, C., & Benarous, M. (2011). Fault-tolerant electric drive for an aircraft nose wheel steering actuator. IET electrical systems in transportation, 1(3), 117-125.
  • Bogue, R. (2009). Shape-memory materials: a review of technology and applications. Assembly Automation, 29(3), 214-219.
  • Book, W. J. (1986). Low cost automation with lighter, versatile machines. IFAC Proceedings Volumes, 19(13), 23-28.
  • Brose, S. W., Weber, D. J., Salatin, B. A., Grindle, G. G., Wang, H., Vazquez, J. J., & Cooper, R. A. (2010). The role of assistive robotics in the lives of persons with disability. American Journal of Physical Medicine & Rehabilitation, 89(6), 509-521.
  • Buytoz, S., Dagdelen, F., Qader, I., Kok, M., & Tanyildizi, B. (2019). Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International, 1-12.
  • Carneiro, R. L. (1974). A Reappraisal of the Roles of Technology and Organization in the Origin of Civilization. American Antiquity, 39(2Part1), 179-186.
  • Casper, J., & Murphy, R. R. (2003). Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 33(3), 367-385.
  • Cattafesta III, L. N., & Sheplak, M. (2011). Actuators for active flow control. Annual Review of Fluid Mechanics, 43, 247-272.
  • Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The Role of Technology in Improving Student Learning of Statistics.
  • Chaudhry, Z., & Rogers, C. A. (1991). Bending and shape control of beams using SMA actuators. Journal of intelligent material systems and structures, 2(4), 581-602.
  • Cho, K.-J., Hawkes, E., Quinn, C., & Wood, R. J. (2008). Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. Paper presented at the 2008 IEEE international Conference on Robotics and Automation.
  • Chua, P. Y., Ilschner, T., & Caldwell, D. G. (2003). Robotic manipulation of food products–a review. Industrial Robot: An International Journal, 30(4), 345-354.
  • Chuanzhong, Z. (1993). Development of Piezoelectric Materials and Their Applications [J]. Piezoelectrics & Acoustooptics, 3.
  • Colorado, J., Barrientos, A., Rossi, C., & Breuer, K. S. (2012). Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Bioinspiration & biomimetics, 7(3), 036006.
  • Culjat, M., King, C.-H., Franco, M., Bisley, J., Grundfest, W., & Dutson, E. (2008). Pneumatic balloon actuators for tactile feedback in robotic surgery. Industrial Robot: An International Journal, 35(5), 449-455.
  • Culp, G. W. (1992). Piezoelectric robotic articulation: Google Patents.
  • Cura, V. O. D., Cunha, F. L., Aguiar, M. L., & Cliquet Jr, A. (2003). Study of the different types of actuators and mechanisms for upper limb prostheses. Artificial organs, 27(6), 507-516.
  • Dadfarnia, M., Jalili, N., Xian, B., & Dawson, D. M. (2003). Lyapunov-based piezoelectric control of flexible cartesian robot manipulators. Paper presented at the Proceedings of the 2003 American Control Conference, 2003.
  • Daerden, F., & Lefeber, D. (2002). Pneumatic artificial muscles: actuators for robotics and automation. European journal of mechanical and environmental engineering, 47(1), 11-21.
  • Daerden, F., Lefeber, D., Verrelst, B., & Van Ham, R. (2001). Pleated pneumatic artificial muscles: actuators for automation and robotics. Paper presented at the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No. 01Th8556).
  • Dagdelen, F., Aldalawi, M., Kok, M., & Qader, I. (2019). Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus, 134(2), 66.
  • Dagdelen, F., Kok, M., & Qader, I. (2019). Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy. Metals and Materials International, 1-8. doi: https://doi.org/10.1007/s12540-019-00298-z
  • Dağdelen, F., Malkoç, T., Kök, M., & Ercan, E. (2016). Comparison of the transformation temperature, microstructure and magnetic properties of Co-Ni-Al and Co-Ni-Al-Cr shape memory alloys. The European Physical Journal Plus, 131(6), 196.
  • De Rossi, D., Suzuki, M., Osada, Y., & Morasso, P. (1992). Pseudomuscular gel actuators for advanced robotics. Journal of intelligent material systems and structures, 3(1), 75-95.
  • Denoyer, K., & Kwak, M. (1996). Dynamic modelling and vibration suppression of a swelling structure utilizing piezoelectric sensors and actuators. Journal of Sound and Vibration, 189(1), 13-31.
  • Dökmeci, M. (1983). Dynamic applications of piezoelectric crystals. Part 3: Experimental studies. Shock Vibration Digest, 15.
  • Dolghi, O., Strabala, K. W., Wortman, T. D., Goede, M. R., Farritor, S. M., & Oleynikov, D. (2011). Miniature in vivo robot for laparoendoscopic single-site surgery. Surgical endoscopy, 25(10), 3453-3458.
  • Dosch, J. J., Inman, D. J., & Garcia, E. (1992). A self-sensing piezoelectric actuator for collocated control. Journal of Intelligent Material Systems and Structures, 3(1), 166-185.
  • Drucker, P. (2012). Technology, management and society: Routledge.
  • Duchaud, J. L., Hlioui, S., Louf, F., Ojeda, J., & Gabsi, M. (2014). Modeling and optimization of a linear actuator for a two-stage valve tappet in an automotive engine. IEEE Transactions on Vehicular Technology, 64(10), 4441-4448.
  • Ercan, E., Dagdelen, F., & Qader, I. (2019). Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry, 1-8. doi: https://doi.org/10.1007/s10973-019- 08418-y
  • Finio, B. M., Shang, J. K., & Wood, R. J. (2009). Body torque modulation for a microrobotic fly. Paper presented at the 2009 IEEE International Conference on Robotics and Automation.
  • Goldenberg, E., Shabtay, G., Mendlovic, E., & Kali, E. (2014). Electromagnetic actuators for digital cameras: Google Patents.
  • Gray, J., & Zhu, C. (2007). In‐pipe robot for inspection and sampling tasks. Industrial Robot: An International Journal.
  • Hines, L., Petersen, K., Lum, G. Z., & Sitti, M. (2017). Soft actuators for small‐scale robotics. Advanced materials, 29(13), 1603483.
  • Howard, D. A., & Walker, K. C. (1993). Landing gear drag strut actuator having self-contained pressure charge for emergency use: Google Patents.
  • Huang, H. L., Park, S.-H., & Park, J.-O. (2008). Shape memory alloy based flower robot. Paper presented at the 39th International Symposium on Robotics, Seoul, Korea (October 2008).
  • Huang, W. (2002). On the selection of shape memory alloys for actuators. Materials & design, 23(1), 11-19.
  • Huang, W., & Toh, W. (2000). Training two-way shape memory alloy by reheat treatment. Journal of materials science letters, 19(17), 1549-1550.
  • Huber, J., Fleck, N., & Ashby, M. (1997). The selection of mechanical actuators based on performance indices. Proceedings of the Royal Society of London. Series A: Mathematical, physical and engineering sciences, 453(1965), 2185-2205.
  • Hunter, I. W., Hollerbach, J. M., & Ballantyne, J. (1991). A comparative analysis of actuator technologies for robotics. Robotics Review, 2, 299-342.
  • Hunter, I. W., & Lafontaine, S. (1992). A comparison of muscle with artificial actuators. Paper presented at the Technical Digest IEEE Solid-State Sensor and Actuator Workshop.
  • Ikuta, K., Tsukamoto, M., & Hirose, S. (1988). Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. Paper presented at the Proceedings. 1988 IEEE International Conference on Robotics and Automation.
  • Inoue, A., & Deng, M. (2007). Piezoelectric actuator based adaptive vibration control of flexible arm. IFAC Proceedings Volumes, 40(13), 197-202.
  • Jacobsen, G., Berger, R., & Horgan, S. (2003). The role of robotic surgery in morbid obesity. Journal of laparoendoscopic & advanced surgical techniques, 13(4), 279-283.
  • Jaffe, B. (2012). Piezoelectric ceramics (Vol. 3): Elsevier.
  • Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, 1078-1113.
  • Janocha, H. (2004). Actuators: Springer.
  • Jbaily, A., & Yeung, R. W. (2015). Piezoelectric devices for ocean energy: a brief survey. Journal of Ocean Engineering and Marine Energy, 1(1), 101-118.
  • Karabegović, I. (2016). The role of industrial robots in the development of automotive industry in China. International Journal of Engineering Works, 3(12), 92-97.
  • Kawamura, K., Bagchi, S., Iskarous, M., & Bishay, M. (1995). Intelligent robotic systems in service of the disabled. IEEE Transactions on rehabilitation engineering, 3(1), 14-21.
  • Kheirikhah, M. M., Rabiee, S., & Edalat, M. E. (2010). A review of shape memory alloy actuators in robotics. Paper presented at the Robot Soccer World Cup.
  • Kim, B., Lee, M. G., Lee, Y. P., Kim, Y., & Lee, G. (2006). An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators A: Physical, 125(2), 429-437.
  • Kim, S. G., Franklin, D. K., & Conner, M. P. (1995). Emergency power system for door: Google Patents.
  • Kok, M., Al-Jaf, A. O. A., Çirak, Z. D., Qader, I. N., & Özen, E. (2019). Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry. doi: https://doi.org/10.1007/s10973-019-08788-3
  • Kök, M., & Ateş, G. (2017). The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application. The European Physical Journal Plus, 132(4), 185.
  • Kök, M., Qader, I. N., Mohammed, S. S., ÖNER, E., Dağdelen, F., & Aydogdu, Y. (2020). Thermal Stability and Some Thermodynamics Analysis of Heat Treated Quaternary CuAlNiTa Shape Memory Alloy. Materials Research Express, 7.
  • Kök, M., Zardawi, H. S. A., Qader, I. N., & Kanca, M. S. (2019). The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus, 134(5), 197. doi: https://doi.org/10.1140/epjp/i2019-12570-9
  • Kolesar, E. S. (1998). Piezoelectric tactile sensor: Google Patents.
  • Kumbhar, S., & Gawade, S. A SURVEY OF DIFFERENT ACTUATOR TECHNOLOGIES.
  • Laumond, J.-P. (1998). Robot motion planning and control (Vol. 229): Springer.
  • Lee, C. (1990). Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. The Journal of the Acoustical Society of America, 87(3), 1144-1158.
  • Liang, C., & Rogers, C. (1992). Design of shape memory alloy actuators. Journal of Mechanical Design, 114(2), 223-230.
  • Liu, L., Towfighian, S., & Hila, A. (2015). A review of locomotion systems for capsule endoscopy. IEEE reviews in biomedical engineering, 8, 138-151.
  • Ma, N., Song, G., & Lee, H. (2004). Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart materials and Structures, 13(4), 777.
  • Maeno, T., & Hino, T. (2006). Miniature five-fingered robot hand driven by shape memory alloy actuators. Paper presented at the Proceedings of the 12th IASTED International Conference, Robotics and Applications.
  • Mavroidis, C. (2002). Development of advanced actuators using shape memory alloys and electrorheological fluids. Journal of Research in Nondestructive Evaluation, 14(1), 1-32.
  • Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., & Laschi, C. (2012). Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & biomimetics, 7(2), 025005.
  • Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J.-J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(209-0015), 13.
  • Nakao, S., Tokunaga, T., Yamane, Y., & Saka, N. (1999). Linear actuator and optical equipment using the same: Google Patents.
  • Niezrecki, C., Brei, D., Balakrishnan, S., & Moskalik, A. (2001). Piezoelectric actuation: state of the art.
  • Ochoński, W. (2010). Application of shape memory materials in fluid sealing technology. Industrial Lubrication and Tribology, 62(2), 99-110.
  • Oldham, K., Rhee, C.-H., Ryou, J.-H., Polcawich, R., & Pulskamp, J. (2009). Lateral thin-film piezoelectric actuators for bio-inspired micro-robotic locomotion. Paper presented at the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
  • Otsuka, K., & Shimizu, K. (1986). Pseudoelasticity and shape memory effects in alloys. International Metals Reviews, 31(1), 93-114.
  • Ozaki, T., & Hamaguchi, K. (2018a). Electro-Aero-Mechanical Model of Piezoelectric Direct-Driven Flapping-Wing Actuator. Applied Sciences, 8(9), 1699.
  • Ozaki, T., & Hamaguchi, K. (2018b). Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PINPMN-PT. Journal of Micromechanics and Microengineering, 28(2), 025007.
  • Park, H., Jung, S., Choi, J., Park, S., Yoon, C., & Park, J. (2007). A study on the moving mechanism for flower robot. Paper presented at the 2007 International Conference on Control, Automation and Systems.
  • Park, J.-S., & Kim, J.-H. (2005). Analytical development of single crystal macro fiber composite actuators for active twist rotor blades. Smart materials and Structures, 14(4), 745.
  • Park, Y. S., Kang, H., Ewing, T. F., Faulring, E. L., DeJong, B. P., Peshkin, M. A., & Colgate, J. E. (2005). Semi‐autonomous Telerobotic Manipulation: A Viable Approach for Space Structure Deployment and Maintenance. Paper presented at the AIP Conference Proceedings.
  • Pelrine, R. E., & Kornbluh, R. D. (2003). Electroactive polymer devices: Google Patents.
  • Pons, J. L. (2005). Emerging actuator technologies: a micromechatronic approach: John Wiley & Sons.
  • Poussot-Vassal, C., Sename, O., Dugard, L., Gaspar, P., Szabo, Z., & Bokor, J. (2008). A new semi-active suspension control strategy through LPV technique. Control Engineering Practice, 16(12), 1519-1534.
  • Prensky, M. (2008). The role of technology. Educational Technology, 48(6).
  • Price, A., Jnifene, A., & Naguib, H. (2007). Design and control of a shape memory alloy based dexterous robot hand. Smart Materials and Structures, 16(4), 1401.
  • Qader, I. N., Kök, M., & Dağdelen, F. (2019). Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter, 553, 1-5. doi: https://doi.org/10.1016/j.physb.2018.10.021
  • Qader, I. N., Kök, M., Dağdelen, F., & Aydogdu, Y. (2019). A Review of Smart Materials: Researches and Applications. El-Cezerî Journal of Science and Engineering, 6(3), 755-788. doi: https://doi.org/10.31202/ecjse.562177
  • Quinones-Hinojosa, A. (2012). Schmidek and Sweet: Operative Neurosurgical Techniques 2-Volume Set: Indications, Methods and Results (Expert Consult-Online and Print) (Vol. 2): Elsevier Health Sciences.
  • Ramos, A. C., Zundel, N., Neto, M. G., & Maalouf, M. (2008). Human hybrid NOTES transvaginal sleeve gastrectomy: initial experience. Surgery for Obesity and Related Diseases, 4(5), 660-663.
  • Rao, A., Srinivasa, A. R., & Reddy, J. N. (2015). Design of shape memory alloy (SMA) actuators (Vol. 3): Springer.
  • Rios, S. A., Fleming, A. J., & Yong, Y. K. (2015). Design of a two degree of freedom resonant miniature robotic leg. Paper presented at the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).
  • Robins, B., Dautenhahn, K., Te Boekhorst, R., & Billard, A. (2005). Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society, 4(2), 105-120.
  • Roth, Z. S. (2002). The role of robotics in freshmen engineering curricula. Paper presented at the Proceedings of the 5th Biannual World Automation Congress.
  • Schoeny, S., & Nelson, G. (2007). Modular industrial equipment facility: Google Patents.
  • Seelecke, S., & Muller, I. (2004). Shape memory alloy actuators in smart structures: Modeling and simulation. Applied Mechanics Reviews, 57(1), 23-46.
  • Shi, Z., Pan, J., Tian, J., Huang, H., Jiang, Y., & Zeng, S. (2019). An Inchworm-inspired Crawling Robot. Journal of Bionic Engineering, 16(4), 582-592.
  • Shimao, D., Inoue, K., & Kurata, T. (2013). Precision press device and press load control method thereof: Google Patents.
  • Shyy, W., Berg, M., & Ljungqvist, D. (1999). Flapping and flexible wings for biological and micro air vehicles. Progress in aerospace sciences, 35(5), 455-505.
  • Smith, G. L., Pulskamp, J. S., Sanchez, L. M., Potrepka, D. M., Proie, R. M., Ivanov, T. G., . . . Meyer, C. D. (2012). PZT‐based piezoelectric MEMS technology. Journal of the American Ceramic Society, 95(6), 1777-1792.
  • Sofla, A., Elzey, D., & Wadley, H. (2008). Two-way antagonistic shape actuation based on the one-way shape memory effect. Journal of Intelligent Material Systems and Structures, 19(9), 1017-1027.
  • Sohn, J., Kim, G.-W., & Choi, S.-B. (2018). A state-of-the-art review on robots and medical devices using smart fluids and shape memory alloys. Applied Sciences, 8(10), 1928.
  • Solmaz, S., Akar, M., & Shorten, R. (2008). Adaptive rollover prevention for automotive vehicles with differential braking. IFAC Proceedings Volumes, 41(2), 4695-4700.
  • Starr, M. B., & Wang, X. (2015). Coupling of piezoelectric effect with electrochemical processes. Nano Energy, 14, 296-311.
  • Sulchek, T., Minne, S., Adams, J., Fletcher, D., Atalar, A., Quate, C., & Adderton, D. (1999). Dual integrated actuators for extended range high speed atomic force microscopy. Applied Physics Letters, 75(11), 1637-1639.
  • Swanson, D. A. (1993). Active engine mounts for vehicles: SAE Technical Paper.
  • Tan, X. (2002). Control of smart actuators.
  • Tanaka, H., Finio, B. M., Karpelson, M., Pérez-Arancibia, N. O., Sreetharan, P. S., Whitney, J. P., & Wood, R. J. (2012). Insect Flight and Micro Air Vehicles (MAVs). Encyclopedia of Nanotechnology, 1096-1109.
  • Tanaka, Y., & Yamada, A. (1991). A rotary actuator using shape memory alloy for a robot-analysis of the response with load. Paper presented at the Proceedings IROS'91: IEEE/RSJ International Workshop on Intelligent Robots and Systems' 91.
  • Tao, T., Liang, Y.-C., & Taya, M. (2006). Bio-inspired actuating system for swimming using shape memory alloy composites. International Journal of Automation and Computing, 3(4), 366-373.
  • Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials: Springer Science & Business Media.
  • Toru, S. (2008). Fast and accurate position control of shape memory alloy actuators. Master Degree Internship Report, Universityof Paris-Sud.
  • Tzou, H., Lee, H.-J., & Arnold, S. (2004). Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures, 11(4-5), 367-393.
  • Tzou, H., & Natori, M. (2001). Piezoelectric Materials and Continua, Encyclopedia of Vibration: Academic Press, London, UK.
  • Uchino, K. (2017). Advanced piezoelectric materials: Science and technology: Woodhead Publishing.
  • Uttley, A. E., Chambers, P. W., Blackwell, N., & Weller, B. (2002). Actuator system for aerospace controls and functions: Google Patents.
  • Villoslada, A., Flores-Caballero, A., Copaci, D., Blanco, D., & Moreno, L. (2014). High-displacement fast-cooling flexible Shape Memory Alloy actuator: Application to an anthropomorphic robotic hand. Paper presented at the 2014 IEEE-RAS International Conference on Humanoid Robots.
  • Wang, B., & Zhu, S. (2018). Seismic behavior of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars. Bulletin of Earthquake Engineering, 16(1), 479-502.
  • Wang, J. (2014). Robotic fish: Development, modeling, and application to mobile sensing: Michigan State University. Electrical Engineering.
  • Wang, Z., Wang, Y., Li, J., & Hang, G. (2009). A micro biomimetic manta ray robot fish actuated by SMA. Paper presented at the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).
  • Webb, G. V., Lagoudas, D. C., & Kurdila, A. J. (1998). Hysteresis modeling of SMA actuators for control applications. Journal of intelligent material systems and structures, 9(6), 432-448.
  • Wood, R., Steltz, E., & Fearing, R. (2005). Optimal energy density piezoelectric bending actuators. Sensors and Actuators A: Physical, 119(2), 476-488.
  • Yang, Y., Ye, X., & Guo, S. (2007). A new type of jellyfish-like microrobot. Paper presented at the 2007 IEEE International Conference on Integration Technology.
  • Yasui, T., & Naito, M. (1981). Electric control circuit for safety apparatus in automotive vehicles: Google Patents.
  • Yoichi, M. (2006). Applications of piezoelectric actuator. NEC Technical Journal, 1(5), 82-86.
  • Yongning, T., & Fengbai, T. (1988). Variable speed AC motor: Google Patents.
  • Yu, J., Chen, S., Wu, Z., & Wang, W. (2016). On a miniature free-swimming robotic fish with multiple sensors. International Journal of Advanced Robotic Systems, 13(2), 62.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Silivri (İstanbul) ve Çanakkale Boğazı Arasındaki Denizel Sedimanların Element Konsantrasyonlarının ICP-OES ve LIBS Yöntemleri İle Analizi ve Korelasyonu

Erol KAM, Zeki Ünal YÜMÜN

İki Kekik TaksonuOriganum onites L. ve Thymbra spicata var. spicata L.’nın Yaprak ve Çiçek Uçucu Bileşenleri

Ayşe Gül SARIKAYA

Başlangıç y plus Değerinin Etkileri: $;gamma-Re_theta$ SST Türbülans Modeli Kullanılarak 3D NACA 4412 Kanadının Sayısal Analizi

Tuğrul OKTAY, Durmuş Sinan KÖRPE, Özdemir Öztürk KANAT

Bazı Yerel Makarnalık Buğday Çeşitlerinde Küllemeye (Blumeria graminis f. sp. tritici) Karşı Dayanıklılığın Belirlenmesi

Ahmet YILDIRIM, Yusuf YANAR, Özlem ATEŞ SÖNMEZOĞLU, Ümmühan TÜRK

Türk Tarımında Çok Kriterli Karar Verme Yöntemleri ile Verimlilik Değerlendirme Modeli

Muhammet Fatih AK

Kompost Mikrobiyal Yakıt Hücreleri İçin Titanyum Elektrot Performansının İncelenmesi

Nurettin ÇEK, Ahmet ERENSOY

Sonlu Eleman Yöntemi İle Düz Dişlilerde Temas Gerilmelerinin İncelenmesi

Abdullah AKPOLAT

DBYBHY (2007) ve TBDY (2018) Deprem Yönetmeliklerinin Kesit Hasar Sınırları Açısından Kıyaslanması

Hakan ULUTAŞ

Ateş Böceği Algoritması Destekli Aşırı Öğrenme Makinesi ile Göğüs Kanseri Veri Kümelerinin Sınıflandırılması

Deniz ÜSTÜN

Biyosentez yöntemi ile üretilen GO: Se nanopartiküllerinin üretimi ve karakterizasyonu ve GO: Se nanopartikülleri kullanılarak geliştirilen Ag / GO: Se / p-Si cihazının akım-gerilim özellikleri

Tuba ÇAKICI