Prevention of Sourdough Bread Spoliage by Antifungal Lactic Acid Bacteria Fermentation

Fırıncılık ürünleri arasında önemli bir yere sahip olan ekmeğin, kısa sürede tüketilmesini gerektiren en büyük neden küflenmedir. Ekmekte küflenmenin engellenmesi için laktik asit bakterilerinin kullanımı yapılan çalışmalar arasındadır. Ekşi hamur ekmeği, laktik asit bakterisi (LAB) ve maya arasındaki etkileşimle oluşan geleneksel bir ürün olmaktadır. Ekşi hamur fermentasyonunda meydana gelen laktik asit, asetik asit ve alkol, ester, karbonil gibi uçucu bileşikler hamurdaki mikroorganizmalar tarafından üretilmektedir. Ekşi hamur kullanımının, ticari maya kullanılarak elde edilen ürünlerden daha fazla lezzet, daha iyi reoloji ve depolama özelliklerine sahip olduğu bilinmektedir. Bu bağlamda yapılan çalışmada, 12 farklı LAB suşunun antifungal aktivitesi ve bu aktivitenin ekşi hamur ve ekmek üzerindeki sonuçları incelenmiştir. Lb. brevis 28C1B3, Lb. plantarum 59E1B4, Lb. crustorum 34TB6N, Lb. brevis 34TB2M, Lb. numerensis 34TB1M, Lb. paralimentarius 59O1B2 suşlarının en iyi antifungal aktiviteye sahip olduğu tespit edilmiştir. Lb. brevis 28C1B3 suşunun en iyi proteolitik aktiviteye sahip olduğu görülmüştür. Ekşi hamurdan saflaştırılan EPS’lerin tümü glukan yapıda olmuştur. Son olarak ekşi hamur ekmeklerinin kontrollü küflendirilmesi ile antifungal analiz sonucu arasında paralellik gözlemlenmiştir. Bu çalışma ile ekşi hamur laktik asit bakteri izolatlarının ekmeğin kalite kriterlerini olumlu yönde etkilediğini göstermiştir.

Prevention of Sourdough Bread Spoliage by Antifungal Lactic Acid Bacteria Fermentation

Bread has an important place among bakery products. Also, the mold is the biggest reason that requires consumed in a short period oftime. The use of lactic acid bacteria to inhibit mold growth in breads are among the studies performed. Sourdough bread is a traditionalproduct formed by the synergistic interaction of lactic acid bacteria (LAB) and yeasts. Lactic acid, acetic acid and various volatilecompounds such as ester, alcohol, aldehydes, furan derivates which occur in the sourdough fermentation, are produced by yeast andbacteria in the dough. It is known that the application of sourdoughs provides more flavor, better rheology, and storage properties thanproducts obtained using commercial yeast. In this study, antifungal activities of 12 different LAB strains and the results of this activityon sourdough and breads were investigated. It was determined that Lb. brevis 28C1B3, Lb. plantarum 59E1B4, Lb. crustorum 34TB6N,Lb. brevis 34TB2M, Lb. numerensis 34TB1M, Lb paralimentarius 59O1B2 strains had the best antifungal activity. The Lb. brevis28C1B3 strain was found to have the best proteolytic activity. All EPSs purified from sourdough were glucan. Finally, a parallelismwas observed between controlled mold molding of sourdough bread and antifungal analysis. With this study, sourdough lactic acidbacterial isolates have shown that it affects the quality criteria of bread positively.

___

  • Ahlberg, S. H., Joutsjoki, V., Korhonena, H. J. (2015). Potential of lactic acid bacteria in aflatoxin risk mitigation. International Journal of Food Microbiology, 207, 87-334 102.
  • Axel C., Brosnan B., Zannini E., Peyer L. C., Furey A., Coffey A., Arendt E. K. (2016). Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Applied Microbiology Biotechnology, 100, 1701–1711.
  • Axel, C., Zannini, E., Arendt, E.K., (2017). Mold spoilage of bread and its biopreservation: a review of current strategies for bread shelf life extension. Crit. Rev. Food Sci. Nutr. 57, 3528–3542.
  • Behera, S. S., & Ray, R. C. (2016). Sourdough bread. In C. M. Rosell, J. Bajerska, & A. F. El Sheikha (Eds.), Bread and its fortification (pp. 53–67). Boca Raton: CRC Press.
  • Black, B. A., Zannini, E., Curtis, J. M., & Gï, M. G. (2013). Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol., 79(6), 1866-1873.
  • Brandt MJ (2007) Sourdough products for convenient use in baking. Food Microbiol 24(2):161–164. https ://doi.org/10.1016/j. fm.2006.07.010
  • Chavan, R., & Jana, A. (2008). Frozen dough for bread making – A review. International Journal of Food Science & Technology, 2, 9– 27. https://doi. org/10.3923/ijds.2010.113.127
  • Coda R., Xu Y., Morenoa D. S., Mojzitac D., Nionellia L., Rizzello C. G., Katina K. (2018). Performance of Leuconostoc citreum FDR241 during wheat flour sourdough type I propagation and transcriptional analysis of exopolysaccharides biosynthesis genes.Food microbiology 76:164-172. https://doi.org/10.1016/j.fm.2018.05.003.
  • Corsetti,A., & Settanni, L. (2007). Lactobacilli in sourdough fermentation. Food Research International,40(5),539–558.
  • Crowley, S., Mahony, J., & Van Sinderen, D. (2013). Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology, 33, 93-109.
  • De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153–177.
  • De Vuyst, L., Neysens, P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 16, 43–56.
  • Debonne, E., Van Bockstaele, F., De Leyn, I., Devlieghere, F., & Eeckhout, M. (2018). Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus niger and Penicillium paneum through application in par-baked wheat and sourdough bread. LWT, 87, 368-378.
  • Deschuyffeleer, N., Audenaert, K., Samapundo, S., Ameye, S., Eeckhout, M., & Devlieghere, F. (2011). Identification and characterization of yeasts causing chalk mould defects on par-baked bread. Food microbiology, 28(5), 1019-1027.
  • Di Cagno, R., De Angelis, M., Lavermicocca, P., De Vincenzi, M., Giovannini, C., Faccia, M., & Gobbetti, M. (2002). Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl. Environ. Microbiol., 68(2), 623-633.
  • Drews, E. (1959). Der Einfluß gesteigerter Essigsäurebildung auf die Haltbarkeit des Schrotbrotes. Brot Gebäck, 13, 113-114.
  • El Sheikha, A. F., & Mahmoud, Y. A.‐G. (2016). Bread fungal contamination: Risk of mycotoxins, protection of anti‐fungal and need to fungal identification. In C. M. Rosell, J. Bajerska, & A. F. El Sheikha (Eds.), Bread and its fortificationfor nutrition and health benefits (pp. 150–162). Boca Raton, FL: Science Publishers Inc., CRC Press.
  • Erbaş M., (2003). Yaş Tarhananın Üretim ve Farklı Saklama Koşullarında Bileşimindeki Değişmeler. Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Antalya.
  • Galle, S., Arendt, E.K. (2014). Exopolysaccharides from sourdough lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 54, 891–901.
  • Gänzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: Crystallization, hydrolysis and value‐added derivatives. International Dairy Journal, 18(7), 685–694.https://doi.org/10.1016/j.idairyj. 2008.03. 003
  • Garofalo, C., Zannini, E., Aquilanti, L., Silvestri, G., Fierro, O., Picariello, G., & Clementi, F. (2012). Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. Journal of agricultural and food chemistry, 60(31), 7719- 7728
  • Gerez, C. L., Torino, M. I., Rollán, G., & de Valdez, G. F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food control, 20(2), 144-148.
  • Gobbetti, M. (1998). The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends in Food Science & Technology, 9(7), 267–274. https://doi.org/10.1016/S0924‐2244(98)00053‐3
  • Gobbetti, M., Rizzello, C.G., Di Cagno, R., De Angelis, M. (2014). How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 37, 30-40. https://doi.org/10.1016/ j.fm.2013.04.012
  • Gocmen D., Gurbuz O., Kumral A.Y., Dagdelen A.F., Sahin I. (2007). The effects of wheat sourdough on glutenin patterns, dough rheology and bread properties. European Food Research and Technology, 225: 821–830.
  • Gül H., Özçelik S., Sağdıç O., Certel M. (2005). Sourdough bread production with lactobacilli and S. cerevisiae isolated from sourdoughs. Process Biochemistry 40: 691–697
  • Hadaegh H, Seyyedain Ardabili S M, Tajabadi Ebrahimi M, Chamani M and Azizi Nezhad R. (2017). The Impact of different lactic acid bacteria sourdoughs on the quality characteristics of toast bread. Journal of Food Quality, 1-11.
  • Hammes, W.P., Gänzle, M.G., 1998. Sourdough breads and related products. In: Wood, B.J.B. (Ed.), Microbiology of Fermented Foods. Springer US, Boston, MA, pp. 199–216.
  • Hansen, A., and Schieberle, P. (2005). Generation of aroma compounds during sourdough fermentation: applied and fundamental aspects. Trends in Food Science & Technology, 16(1), 85-94.
  • Hassan, Y., Zhou, T., & Bullerman, L. B. (2005). Sourdough lactic acid bacteria as antifungal and mycotoxin-controlling agents. Food Science and Technology International, 22, 79-90.
  • Ispirli H. and Dertli E. (2018). Isolation and identification of exopolysaccharide producer lactic acid bacteria from Turkish yoğurt. J Food Process Preserv. 42:e13351. https://doi.org/10.1111/jfpp.13351
  • Kaditzky, S., Seitter, M., Hertel, C., Vogel, R.F., 2008. Performance of Lactobacillus sanfranciscensis TMW 1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality. Eur. Food Res. Technol. 227, 433–442.
  • Kam, P. V., Bianchini, A., & Bullerman, L. B. (2007). Inhibition of mold growth by sourdough bread cultures. RURALS: Review of undergraduate research in agricultural and life sciences, 2(1), 5.
  • Kunji, E. R., Mierau, I., Hagting, A., Poolman, B., & Konings, W. N. (1996). The proteotytic systems of lactic acid bacteria. Antonie van Leeuwenhoek, 70(2-4), 187-221.
  • Lavermicocca, P., Valerio, F., & Visconti, A. (2003). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microbiol., 69(1), 634-640.
  • Legan,J.D.(1993). Mould spoilage of bread: The problem and some solutions. International Biodeterioration & Biodegradation,32(1),33–53.
  • Lynch, K. M., Coffey, A., & Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International, 110, 52 –61.
  • Mandel, V., Sen, S.K., Mandel, N.C., 2013. Production and partial characterisation of an inducer-dependent novel antifungal compound(s) by Pediococcus acidilactici LAB 5. J. Sci. Food Agric. 93, 2445–2453.
  • Mauch A, Dal Bello F, Coffey A, Arendt EK. (2010). The use of Lactobacillus brevis PS1 to in vitro inhibit the out growth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol 141:116–21.
  • Mildner‐Szkudlarz, I., & Bajerska, J. (2016). Phytochemicals as functional bread compounds. In C. M. Rosell, J. Bajerska, & A. F. El Sheikha (Eds.), Bread and its fortification for nutrition and health benefits (pp. 373–384). Boca Raton, FL: Science Publishers Inc., CRC Press.
  • Mohamed A., Rayas-Duarte P., Xu J. 2008. Hard Red Spring wheat/C-TRIM 20 bread: Formulation,processing and texture analysis. Food Chemistry, 107,516–524.
  • Moore, M.M., Dal Bello, F., & Arendt, E.K. (2008). Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. European Food Research and Technol, 226, 1309-1316.
  • Pepe, O., Villani, F., Oliviero, D., Greco, T., & Coppola, S. (2003). Effect of proteolytic starter cultures as leavening agents of pizza dough. International journal of food microbiology, 84(3), 319-326.
  • Pétel, C., Onno, B., & Prost, C. (2017). Sourdough volatile compounds and their contribution to bread: A review. Trends in Food Science & Technology, 59, 105–123. https://doi.org/10.1016 /j.tifs. 2016.10.015
  • Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G., Vallone, L., De Noni, I., Brasca, M., Fortina, M.G., 2018. Functional characterization of Lactobacillus plantarum ITEM 17215: a potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Res. Int. 106, 936–944.
  • Rizzello CG, Curiel JA, Nionelli L, Vincentini O, Di Cagno R, Silano M, Gobbetti M, Coda R (2014). Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiol 37: 59–68. https://doi.org/10.1016/j.fm.2013.06.017
  • Rocken, W. (1996). Applied aspects of sourdough fermentation. Adv. Food Sci. 18:212–216.
  • Ronda F, Perez Quirce S, Lazaridou A, Billiaderis CG. (2015). Effect of barley and oat β-glucan concentrates on gluten-free ricebased doughs and bread characteristics. Food Hydrocolloids, 48, 197–207.
  • Schnürer, J., & Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology, 16(1- 3), 70-78.
  • Sorokulova, I. B., Reva, O. N., Smirnov, V. V., Pinchuk, I. V., Lapa, S. V., & Urdaci, M. C. (2003). Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Letters in applied microbiology, 37(2), 169-173.
  • Ström, K., Sjögren, J., Broberg, A., & Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol., 68(9), 4322-4327.
  • Suhr and Nielsen,(2003). Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. Journal of Applied Microbiology 94, 665–674.
  • Tamani RJ, Goh K K T and Brennan C S. (2013). Physico-chemical properties of sourdough bread production using selected Lactobacilli starter cultures. Journal of Food Quality, 36, 245–252.
  • Van Geel-Schutten, G. H., Faber, E. J., Smit, E., Bonting, K., Smith, M. R., Ten Brink, B., Kamerling J.P., Vliegenthart, J. F. G. and Dijkhuizen L. (1999). Biochemical and Structural Characterization of the Glucan and Fructan Exopolysaccharides Synthesized by the Lactobacillus reuteri Wild-Type Strain and by Mutant Strains. Applied and Environmental Microbiology, 65(7), 3008-3014.
  • Vermeulen, N., Pavlovic, M., Ehrmann, M. A., Gänzle, M. G., & Vogel, R. F. (2005). Functional characterization of the proteolytic system of Lactobacillus sanfranciscensis DSM 20451T during growth in sourdough. Appl. Environ. Microbiol., 71(10), 6260-6266.
  • Vrček, I. V., Čepo, D. V., Rašić, D., Peraica, M., Žuntar, I., Bojić, M., ... & Medić-Šarić, M. (2014). A comparison of the nutritional value and food safety of organically and conventionally produced wheat flours. Food chemistry, 143, 522-529.
  • Welman, A. D., & Maddox, I. S. (2003). Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends in Biotechnology, 21(6), 269–274.
  • Yan B., Zhao J., Fan D., Tian F., Zhang H., Chen W. (2016). Antifungal activity of Lactobacillus plantarum against Penicillium roqueforti in vitro and the preservatıon effect on chinese steamed bread. Journal of Food Processing and Preservation, 41, 1-9.