Patolojik Doku Örneklerinde Mikroşerit Anten Yapısında S-Parametrelerine Ait Normalizasyon Değerlerinin İncelenmesi

Patolojik doku örneklerinin antenlerle incelenmelerine ait çalışmalar geliştirilmeye başlanmıştır. Bu çalışmada kazancı artırılmış bir mikroşerit anten yapısı kullanılarak gerçekleştirilen normalizasyon çalışmaları sunulmaktadır. Normalizasyon çalışmalarında kullanılan anten yapısında 4.4 dielektrik sabiti değerine sahip FR-4 taban tercih edilmiştir. Patolojik doku örneklerinde normal ve kanserli deri dokusuna ait numuneler HFSS’de modellenerek simülasyonları yapılmıştır. Yapılan simülasyonlar sonucunda normalize edilen S-parametrelerindeki farklılıklar tablolar ile gösterilmiştir. S11 değerindeki normal deri dokusu normalizasyon değeri 13.4 iken, tümörlü deri dokusu örneğine ait değer 18.0 olarak bulunmuştur. Diğer S-parametreleri için de normal ve kanserli deri dokusu için farklı değerler elde edilmiştir. Değerlerdeki farklılıklar tasarlanan anten yapısının başarısını ortaya koyaktadır.

Investigation of Normalization Values of S-Parameters in Microstrip Antenna Structure in Pathological Tissue Samples

Studies on the examination of pathological tissue samples with antennas have begun to be developed. In this study, normalization studies performed using a microstrip antenna structure with increased gain are presented. FR-4 substrate with a dielectric constant of 4.4 is preferred in the antenna structure used in the normalization studies. In pathological tissue samples, samples of normal and cancerous skin tissue are modeled in HFSS and simulated. The differences in the normalized S-parameters as a result of the simulations are shown in the tables. While the normal skin tissue normalization value at S11 is 13.4, the value for the tumor skin tissue sample is 18.0. For other S-parameters, different values are obtained for normal and cancerous skin tissue. The differences in the values reveal the success of the proposed antenna structure.

___

  • Aguinis, H., Bailey, J. R., Borgatti, S. P., Boyd, B., DeJordy, R., DeSimone, J. A., … Schurer Lambert, L. (2019). Recommendations for Improved Methods and Analysis in Management Research. Academy of Management Proceedings, 2019(1), 17367. https://doi.org/10.5465/AMBPP.2019.17367SYMPOSIUM
  • Alexander, G., Klavsuts, I. L., Klavsuts, D. A., & Khayrullina, M. V. (2016). AC voltage normalization - Conception and technology for smart grid system. Proceedings - 2016 51st International Universities Power Engineering Conference, UPEC 2016, 2017-Janua, 1–5. https://doi.org/10.1109/UPEC.2016.8114115
  • Alhuwaidi, S., Zubair, K., Song, H., Shellman, Y., Robinson, W., & Robinson, S. (2015). Disease diagnostics of biological tissues using free-space technique in terahertz frequency range. IEEE Biomedical Circuits and Systems Conference: Engineering for Healthy Minds and Able Bodies, BioCAS 2015 - Proceedings. https://doi.org/10.1109/BioCAS.2015.7348378
  • B. J. Kwaha, O. N. Inyang, P. A. (2011). The circular microstrip patch antenna-design and implementation. International Journal of Recent Research and Applied Studies (IJRRAS), 8(1), 86–95.
  • Balanis, C. A. (2013). Anten teorisi : analiz ve tasarım. Nobel Akademik Yayıncılık.
  • Bansal, R. (1999). The far-field: How far is far enough? Applied Microwave and Wireless, 11(11), 58–60.
  • Caccami, M. C., Hogan, M. P., Alfredsson, M., Marrocco, G., & Batchelor, J. C. (2018). A Tightly Integrated Multilayer Battery Antenna for RFID Epidermal Applications. IEEE Transactions on Antennas and Propagation, 66(2), 609–617. https://doi.org/10.1109/TAP.2017.2780899
  • Caspers, F. (2011). RF engineering basic concepts: S-parameters. CAS 2010 - CERN Accelerator School: RF for Accelerators, Proceedings, (June), 67–93.
  • Chow, E. Y., Ouyang, Y., Beier, B., Chappell, W. J., & Irazoqui, P. P. (2009). Evaluation of cardiovascular stents as antennas for implantable wireless applications. IEEE Transactions on Microwave Theory and Techniques, 57(10), 2523–2532. https://doi.org/10.1109/TMTT.2009.2029954
  • Dey, S., & Mittra, R. (1996). Compact microstrip patch antenna. Microwave and Optical Technology Letters, 13(1), 12–14. https://doi.org/10.1002/(sici)1098-2760(199609)13:1<12::aid-mop4>3.0.co;2-q
  • Gabriel, C. (1996). Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Environmental Health, Report No.(June), 21. https://doi.org/Report N.AL/OE-TR- 1996-0037
  • Ghodgaonkar, D. K., Varadan, V. V., & Varadan, V. K. (1989). A Free-Space Method for Measurement of Dielectric Constants and Loss Tangents at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 38(3), 789–793. https://doi.org/10.1109/19.32194
  • Hasan, R. R., Shanto, M. A. H., Howlader, S., & Jahan, S. (2018). A novel design and miniaturization of a scalp implantable circular patch antenna at ISM band for biomedical application. 2017 Intelligent Systems Conference, IntelliSys 2017, 2018-Janua(September), 166–169. https://doi.org/10.1109/IntelliSys.2017.8324286
  • Hong, S. M., Choi, C. H., Magill, A. W., Shah, N. J., & Felder, J. (2018). Design of a Quadrature 1H/31P Coil Using Bent Dipole Antenna and Four-Channel Loop at 3T MRI. IEEE Transactions on Medical Imaging, 37(12), 2613–2618. https://doi.org/10.1109/TMI.2018.2844462
  • Jin, H. S., Choi, B. H., Kang, J. K., Kim, S. I., Lim, J. H., & Song, S. Y. (2016). Measurement and Normalization Methods to Provide Detailed Information on Energy Consumption by Usage in Apartment Buildings. Energy Procedia, 96(October), 881–894. https://doi.org/10.1016/j.egypro.2016.09.161
  • Kamel, H. M. (2011). Trends and Challenges in Pathology Practice Choices and necessities. 11(1), 38–44.
  • Lane, J., Biondi, J., JS Pleva - US Patent 5, 400,040, & 1995, undefined. (n.d.). Microstrip patch antenna. In Google Patents. Retrieved from https://patents.google.com/patent/US5400040A/en
  • Lin, J. Y., Chen, H. C., & Yen, M. Y. (2018). Sensor/Antenna Interface IC for Implantable Biomedical Monitoring System. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1660–1667. https://doi.org/10.1109/TMTT.2017.2755647
  • Mak, C.L. and Luk, K.M. and Lee, K.F. and Chow, Y. . (2000). Experimental study of a microstrip patch antenna with an L-shaped probe. IEEE Transactions on Antennas and Propagation, 48, 777–783.
  • Meredov, A., Klionovski, K., & Shamim, A. (2019). Screen-Printed, Flexible, Parasitic Beam-Switching Millimeter-Wave Antenna Array for Wearable Applications. IEEE Open Journal of Antennas and Propagation, 1, 2–10. https://doi.org/10.1109/OJAP.2019.2955507
  • Nakhleh, R. E. (2006, July 1). What is quality in surgical pathology? Journal of Clinical Pathology, Vol. 59, pp. 669–672. https://doi.org/10.1136/jcp.2005.031385
  • Nalam, M., Rani, N., & Mohan, A. (2014). Biomedical Application of Microstrip Patch Antenna. International Journal of Innovative Science and Modern Engineering (IJISME), 2(6), 6–8.
  • Patterson, J. (2014). Weedon’s Skin Pathology E-Book (Fourth). Retrieved from https://www.google.com/books?hl=tr&lr=&id=Y-LTBQAAQBAJ&oi=fnd&pg=PP1&dq=patterson+2014+pathology&ots=U3wha_QPa1&sig=0fYB8PC-f3bX5-UQ0robmQaUhFY
  • Singh, I., & Tripathi, V. S. (2011). Micro strip Patch Antenna and its Applications: a Survey. In Article in International Journal of Computer Applications in Technology. Retrieved from https://www.researchgate.net/publication/232318276
  • Top, R. (2017). A transmitter microstrip antenna design and application towards the detection of heart disease parameters. Selcuk University.