Ni-Sepiolit Katalizörler Üzerinde CO2 Metanasyonu

Bu çalışmada çevreye zararlı karbondioksit gazının değerli bir yakıt olan metana dönüşümünü artırmak için yeni katalizörlerin geliştirilmesi amaçlandı. Destek malzemesi olarak doğal bir kil minerali olan sepiolit (SEP) kullanılarak; %6-8 (ağırlık-ağırlık) Ni içeren katalizörler emdirme yöntemiyle hazırlandı. Katalizörler, XRD ve FT-IR analizi ile karakterize edildi. Karbon dioksitin katalitik hidrojenasyonuyla metan üretimi için reaksiyon koşulları şu şekilde belirlendi: H2/CO2 = 4 molar oranı; atmosfer basıncında 300-600°C sıcaklık aralığı. Çıkış gaz karışımı µGC kullanılarak analiz edildi. Katalizörlerin aktiviteleri karbondioksit dönüşümü ve metan seçiciliği açısından belirlendi. %6Ni/SEP ve %8 Ni/SEP, 400°C'de sırasıyla %65,76 ve %68,42 karbondioksit dönüşümü sağladı. Ek olarak, her iki katalizör de 300 ve 400°C'de (>%98) yüksek metan seçiciliği sergiledi.

CO2 Methanation Over Ni-Sepiolite Catalysts

In this study, it was aimed to develop new catalysts to increase the conversion of environmentally harmful carbon dioxide gas to methane which is a valuable fuel. By using a natural clay mineral sepiolite (SEP) as support material; 6-8% (weight-weight) Ni-containing catalysts were prepared by impregnation. Catalysts were characterized by XRD and FT-IR analysis. Reaction conditions of catalytic hydrogenation of carbon dioxide for methane production were determined as: H2/CO2 = 4 molar ratio, the temperature range of 300-600°C at atmospheric pressure. The output gas mixture was analyzed using the µGC. The activities of the catalysts were determined in terms of carbon dioxide conversion and methane selectivity. 6%Ni/SEP and 8%Ni/SEP provided 65.76% and 68.42% carbon dioxide conversion at 400°C, respectively. In addition, both catalysts exhibited high methane selectivity at 300 and 400°C (>98%).

___

  • Akçay, M. (2004). FT-IR spectroscopic investigation of the adsorption pyridine on the raw sepiolite and Fe-pillared sepiolite from anatolia. Journal of Molecular Structure, 694(1–3), 21–26. https://doi.org/10.1016/j.molstruc.2004.01.010
  • Cerdá-Moreno, C., Chica, A., Keller, S., Rautenberg, C., & Bentrup, U. (2020). Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS. Applied Catalysis B: Environmental, 264(July 2019), 118546. https://doi.org/10.1016/j.apcatb.2019.118546
  • Corma, A., García, H., Leyva, A., & Primo, A. (2004). Alkali-exchanged sepiolites containing palladium as bifunctional (basic sites and noble metal) catalysts for the Heck and Suzuki reactions. Applied Catalysis A: General, 257(1), 77–83. https://doi.org/10.1016/S0926-860X(03)00635-5
  • Danaci, S., Protasova, L., Lefevere, J., Bedel, L., Guilet, R., & Marty, P. (2016). Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts. Catalysis Today, 273, 234–243. https://doi.org/10.1016/j.cattod.2016.04.019
  • Daroughegi Mofrad, B., Rezaei, M., & Hayati-Ashtiani, M. (2019). Preparation and characterization of Ni catalysts supported on pillared nanoporous bentonite powders for dry reforming reaction. International Journal of Hydrogen Energy, 44(50), 27429–27444. https://doi.org/10.1016/j.ijhydene.2019.08.194
  • Dong, N., Ye, Q., Chen, M., Cheng, S., Kang, T., & Dai, H. (2020). Sodium-treated sepiolite-supported transition metal (Cu, Fe, Ni, Mn, or Co) catalysts for HCHO oxidation. Chinese Journal of Catalysis, 41(11), 1734–1744. https://doi.org/10.1016/S1872-2067(20)63599-9
  • Esen, T. (2016). Heterojen Katalizör Sentezi ve Çay Atığından Termokimyasal Süreçler ile Hidrojence Zengin Gaz Ürün Eldesi. Anadolu Üniversitesi, Fen Bilimleri Enstitüsü.
  • Graça, I., González, L. V., Bacariza, M. C., Fernandes, A., Henriques, C., Lopes, J. M., & Ribeiro, M. F. (2014). CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Applied Catalysis B: Environmental, 147, 101–110. https://doi.org/10.1016/j.apcatb.2013.08.010
  • Güngör, N., Işçi, S., Günister, E., Miśta, W., Teterycz, H., & Klimkiewicz, R. (2006). Characterization of sepiolite as a support of silver catalyst in soot combustion. Applied Clay Science, 32(3–4), 291–296. https://doi.org/10.1016/j.clay.2006.03.005
  • Jayan, A., Anand, K., & Stephen, J. (2017). An Overview of Ferrous and Cobalt Catalysts Used in the Conversion of Synthetic Gas to Fuels. International Journal of ChemTech Research, 10(4), 494–505.
  • Jiang, Y., Huang, T., Dong, L., Qin, Z., & Ji, H. (2018). Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation. Chinese Journal of Chemical Engineering, 26(11), 2361–2367. https://doi.org/10.1016/j.cjche.2018.03.029
  • Kıpçak, İ., & Kalpazan, E. (2020). Preparation of CoB catalysts supported on raw and Na-exchanged bentonite clays and their application in hydrogen generation from the hydrolysis of NaBH4. International Journal of Hydrogen Energy, 45(50), 26434–26444. https://doi.org/10.1016/j.ijhydene.2020.03.230
  • Kurtaran Ersal, E. (2013). Sepiolit ile Sulu Çözeltilerden Ni(II) İyonunun Giderilmesi. Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü.
  • Kurtoğlu, S. F., Sarp, S., Yılmaz Akkaya, C., Yağcı, B., Motallebzadeh, A., Soyer-Uzun, S., & Uzun, A. (2018). COx-free hydrogen production from ammonia decomposition over sepiolite-supported nickel catalysts. International Journal of Hydrogen Energy, 43(21), 9954–9968. https://doi.org/10.1016/j.ijhydene.2018.04.057
  • Li, W., Nie, X., Jiang, X., Zhang, A., Ding, F., Liu, M., … Song, C. (2018). ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Applied Catalysis B: Environmental, 220(August 2017), 397–408. https://doi.org/10.1016/j.apcatb.2017.08.048
  • Lu, X., Gu, F., Liu, Q., Gao, J., Liu, Y., Li, H., … Su, F. (2015). VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation. Fuel Processing Technology, 135, 34–46. https://doi.org/10.1016/j.fuproc.2014.10.009
  • Meşe, E., Kantürk Figen, A., Coşkuner Filiz, B., & Pişkin, S. (2018). Cobalt-boron loaded thermal activated Turkish sepiolite composites (Co-B@tSe) as a catalyst for hydrogen delivery. Applied Clay Science, 153(September 2017), 95–106. https://doi.org/10.1016/j.clay.2017.12.008
  • Meşecikli Cansev, H. (2014). Modifiye Edilmiş Sepiyolit Üzerine Pb(Iı), Cu(Iı) Ve Cd(Iı) İyonlarının Adsorpsiyonu. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • Quindimil, A., Bacariza, M. C., González-Marcos, J. A., Henriques, C., & González-Velasco, J. R. (2021). Enhancing the CO2 methanation activity of γ-Al2O3 supported mono- and bi-metallic catalysts prepared by glycerol assisted impregnation. Applied Catalysis B: Environmental, 296, 120322. https://doi.org/10.1016/j.apcatb.2021.120322
  • Quindimil, A., De-La-Torre, U., Pereda-Ayo, B., González-Marcos, J. A., & González-Velasco, J. R. (2018). Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 238(July), 393–403. https://doi.org/10.1016/j.apcatb.2018.07.034
  • Shi, J., Li, Y., Zhang, Q., Ma, X., Duan, L., & Zhou, X. (2017). CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions. Applied Energy, 203, 412–421. https://doi.org/10.1016/j.apenergy.2017.06.050
  • Stangeland, K., Kalai, D., Li, H., & Yu, Z. (2017). CO2 Methanation: The Effect of Catalysts and Reaction Conditions. Energy Procedia, 105(1876), 2022–2027. https://doi.org/10.1016/j.egypro.2017.03.577
  • Xie, T., Wang, J., Ding, F., Zhang, A., Li, W., Guo, X., & Song, C. (2017). CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size. Journal of CO2 Utilization, 19(March), 202–208. https://doi.org/10.1016/j.jcou.2017.03.022
  • Yurdakul, M. (2015). Biyokütleden Hidrojen Eldesinde Kullanılan Katalizörlerinin Sentezi ve Karakterizasyonu. Anadolu Üniversitesi, Fen Bilimleri Enstitüsü.