Limonen Bazlı Kükürt Polimerinin Sentezi ve Karakterizasyonu

Bu araştırmada, portakal kabuklarından ekstrakte edilen limonen ile kükürt bazlı bir polimer sentezlenmiştir. Sentez işlemi, erimiş kükürt içerisine kütlece % 0, % 0.5, % 1, % 2 ve % 4 oranında limonen damlatılarak gerçekleştirilmiştir. Sentezlenen kükürt bazlı polimerin kimyasal bağ yapısındaki değişiklik Fourier Dönüşümü Kızılötesi Spektrofotometresi (FTIR) ile belirlenmiştir. Ayrıca, kükürt bazlı polimerin yoğunluğu, Shore D sertliği ve termal iletkenlik katsayısı da karakterize edilmiştir. Yapılan değerlendirmelere göre en iyi sonuçlar ağırlıkça % 1 portakal kabuğundan ekstrakte edilen limonen ile elde edilmiştir. Kütlece % 1'in altında limonen kullanıldığında polimerizasyon veriminin düşük olduğu gözlemlenmiştir. Daha yüksek oranlarda limonene kullanımı kükürt bazlı polimerin Shore D sertliği azaltmış ve böylece daha yumuşak bir polimer sentezlenmiştir. Ayrıca, kükürt bazlı polimerin ortalama yoğunluğu yaklaşık 2067 kg/m3 ve ısıl iletkenlik katsayısı da 0.25 W/m·K olarak ölçülmüştür. Polimer karışımındaki limonen içeriği arttıkça ısıl iletkenlik katsayısı düşmüş ve daha gözenekli bir yapı oluşmuştur.

Synthesis and Characterization of Limonene-Based Sulfur Polymer

In this research, a sulfur-based polymer has been synthesized with limonene extracted from orange peels. The synthesis process has been carried out by dropping limonene at 0 wt.%, 0.5 wt.%, 1 wt.%, 2 wt.%, and 4 wt.% ratios into the molten sulfur. The change in the chemical bond structure of the synthesized sulfur-based polymer is determined by Fourier Transform Infrared Spectrophotometer (FTIR). Moreover, the density, Shore D hardness, and thermal conductivity coefficient of the sulfur-based polymer are also characterized. According to the evaluations, it has been seen that limonene extracted from 1% orange peel gave the best results. It has been observed that the polymerization efficiency is low when used below 1 wt.% by mass. At higher rates, Shore D hardness of the sulfur-based polymer decreases, thus a softer polymer is obtained. Besides, the density of the sulfur-based polymer is approximately 2067 kg/m3, and the thermal conductivity coefficient is measured at an average of 0.25 W/m·K. As the content of limonene in the polymer mixture raises, the thermal conductivity coefficient decreases and a more porous structure is formed.

___

  • J. M. Chalker, Kucera. L. Renata and M. J. H. Worthington, Green Chem. 1–6, 2017.
  • B. Seel, F, Muller, A, Krebs, Sulfur in History: The role of sulfur in ‘Black Powder’, in Sulfur-Its Signficance for Chemistry, for the Geo-Bio and Cosmophere and Technology, Elsevier, 5th edn., 1984.
  • Y. Zhang, R. S. Glass, K. Char, and J. Pyun, Polym. Chem. 10, 4078–4105, 2019.
  • R. J. Angelici, Acc. Chem. Res. 21, 387–394, 1988.
  • W.J. Chung, J.J. Griebel, E.T. Kim, H. Yoon, A.G. Simmonds, H.J. Ji, J. Pyun. The use of elemental sulfur as an alternative feedstock for polymeric materials, Nat. Chem. 5 (6), 518-524, 2013.
  • Washington. D.C Environ. Prot. Agency. 1–4, 1991.
  • K.K. Jena, S.M. Alhassan Melt processed elemental sulfur reinforced polyethylene composites J. Appl. Polym. Sci., 133 (9), 2015. B. Meyer, Elemental Sulfur, Chem. Rev. 76 (3), 367 – 388, 1976.
  • B. Meyer, T. V. Oommen, D. Jensen, J. Color of liquid sülfür, J. Phys. Chem. 75 (7), 912–917, 1971.
  • M. Arslan, B. Kiskan, E. C. Cengiz, R. Demir-Cakan, and Y. Yagci, Inverse Vulcanization of Bismaleimide and Divinylbenzene by Elemental Sulfur for Lithium Sulfur Batteries, Eur. Polym. J. 80, 70–77, 2016.
  • D. J. Parker, H. A. Jones, S. Petcher, L. Cervini, J. M. Griffin, R. Akhtar and T. Hasell, Low Cost and Renewable Sulfur-Polymers by Inverse Vulcanisation, and Their Potential for Mercury Capture, J. Mater. Chem. A. 5, 11682–11692, 2017.
  • J. A. Smith, S. J. Green, S. Petcher, D. J. Parker, B. Zhang, M. J. H. Worthington, X. Wu, C. A. Kelly, T. Baker, C. T. Gibson, J. A. Campbell, D. A. Lewis, M. J. Jenkins, H. Willcock, J. M. Chalker, and T. Hasell, Crosslinker Copolymerization for Property Control in Inverse Vulcanization, Chem. – Eur. J. 10433–10440, 2019.
  • M.P. Crockett, AM Evans, MJH Worthington, IS Albuquerque, AD Slattery, CT Gibson, JA Campbell, DA Lewis, GJL Bernardes, JM Chalker, Angew. Kimya Int. Ed. 55, 1714, 2016.
  • A. Hoefling, Y.J. Lee, P. Theato. Sulfur-based polymer composites from vegetable oils and elemental Sulfur: a sustainable active material for Li – S batteries Macromol. Chem. Phys. 1-9, 2016.
  • A.D. Tikoalu, N.A. Lundquist, J.M. Chalker. Mercury sorbents made by inverse vulcanization of sustainable triglycerides: the plant oil structure influences the rate of mercury removal from water Adv. Sustain. Syst. 1900111, 1-9, 2020.
  • M.J.H. Worthington, C.J. Shearer, L.J. Esdaile, J.A. Campbell, C.T. Gibson, S.K. Legg, Y. Yin, N.A. Lundquist, J.R. Gascooke, I.S. Albuquerque, J.G. Shapter, G.G. Andersson, D.A. Lewis, G.J.L. Bernardes, J.M. Chalker. Sustainable polysulfides for oil spill remediation ACS Cent. Sci. 1-7, 2018.
  • C. Herrera, K.J. Ysinga, C.L. Jenkins Polysulfides synthesized from renewable garlic components and repurposed sulfur form environmentally friendly adhesives ACS Appl. Mater. Interfaces. 11, 35312-35318, 2019.
  • D.A. Boyd, V.Q. Nguyen, C.C. McClain, F.H. Kung, C.C. Baker, J.D. Myers, M.P. Hunt, W. Kim, J.S. Sanghera. Optical properties of a sulfur-rich organically modified chalcogenide polymer synthesized via inverse vulcanization and containing an organometallic comonomer, ACS Macro Lett. 8, 113-116, 2019.
  • S.F. Valle, A.S. Giroto, R. Klaic, G.G.F. Guimar. Sulfur fertilizer based on inverse vulcanization process with soybean oil Polym. Degrad. Stabil., 162, 2019, 102-105.