Nanoyapılı CuO İnce Filmlerin Bant Aralığının PEG Yüzey Aktif Maddesi Kullanılarak Kontrol Edilmesi

Nano yapılı bakır oksit ince filmler, oda sıcaklığında cam substratlar üzerinde, farklı miktarlarda polietilen glikol (PEG) ile kolay ve düşük maliyetli bir Ardışık İyonik Tabaka Adsorpsiyon ve Reaksiyonu (SILAR) yöntemi ile üretilmiştir. CuO ince filmlerin optik özellikleri üzerine PEG'in etkileri, ultraviyole görünür (UV-Vis) spektroskopisi analizi ile incelenmiştir. Oda sıcaklığında UV-Vis analizi ile, CuO ince filmlerin optik bant aralığı değerlerinin ve geçirgenlik özelliklerinin, büyüme çözeltisindeki artan PEG konsantrasyonuna bağlı olduğu görülmüştür. CuO ince filmlerin optik bant aralığı enerjisinin, artan PEG konsantrasyonu ile 1.30 eV değerinden 1.42 eV değerine çıktığı tespit edilmiştir. CuO ince filmlerin kalınlığı da, PEG konsantrasyonuna bağlı olarak 137 nm ile 680 nm arasında değiştiği bulunmuştur. Ayrıca, ince filmlerin kırılma indisi (n), yüksek frekanslı dielektrik sabiti (e¥) ve optik statik (e0) değerleri dahil olmak üzere diğer önemli parametreler, film kalınlığının bir fonksiyonu olarak optik bant aralığı enerji değerleri kullanılarak hesaplanmıştır. Yapılan incelemeler, PEG konsantrasyonunun SILAR yöntemiyle büyütülen CuO ince filmlerinin optik özellikleri üzerinde kayda değer bir etkisi olduğunu ortaya çıkarmıştır.

Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant

Nano yapılı bakır oksit ince filmler, oda sıcaklığında cam substratlar üzerinde, farklı miktarlarda polietilen glikol (PEG) ile kolay ve düşük maliyetli bir Ardışık İyonik Tabaka Adsorpsiyon ve Reaksiyonu (SILAR) yöntemi ile üretilmiştir. CuO ince filmlerin optik özellikleri üzerine PEG'in etkileri, ultraviyole görünür (UV-Vis) spektroskopisi analizi ile incelenmiştir. Oda sıcaklığında UV-Vis analizi ile, CuO ince filmlerin optik bant aralığı değerlerinin ve geçirgenlik özelliklerinin, büyüme çözeltisindeki artan PEG konsantrasyonuna bağlı olduğu görülmüştür. CuO ince filmlerin optik bant aralığı enerjisinin, artan PEG konsantrasyonu ile 1.30 eV değerinden 1.42 eV değerine çıktığı tespit edilmiştir. CuO ince filmlerin kalınlığı da, PEG konsantrasyonuna bağlı olarak 137 nm ile 680 nm arasında değiştiği bulunmuştur. Ayrıca, ince filmlerin kırılma indisi (n), yüksek frekanslı dielektrik sabiti (e¥) ve optik statik (e0) değerleri dahil olmak üzere diğer önemli parametreler, film kalınlığının bir fonksiyonu olarak optik bant aralığı enerji değerleri kullanılarak hesaplanmıştır. Yapılan incelemeler, PEG konsantrasyonunun SILAR yöntemiyle büyütülen CuO ince filmlerinin optik özellikleri üzerinde kayda değer bir etkisi olduğunu ortaya çıkarmıştır.

___

  • Adachi, S., 2005. Properties of Group IV, III-V and II-VI Semiconductors, Wiley, Chishester.
  • Akaltun, Y., Yıldırım, M.A., Ateş, A., Yıldırım, M. 2011. The Relationship between Refractive Index-Energy Gap and the Film Thickness Effect on the Characteristic Parameters of CdSe Thin Films. Optics Communications 284, 2307-2311.
  • Akaltun, Y., Çayır, T. 2015. Fabrication and characterization of NiO thin films prepared by SILAR method. Journal of Alloys and Compounds 625, 144-148.
  • Ateş, A., Yıldırım, M.A., Kundakçı, M., Astam, A. 2007. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method. Materials Science in Semiconductor Processing 10, 281-286.
  • Balamurugan, B., Mehta, B.R. 2001. Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396 (1-2) 90-96.
  • Chang, H., Kao, M.-J., Cho, K.-C., Chen, S.-L., Chu, K.-H., Chen, C.-C. 2011. Integration of CuO thin films and dye-sensitized solar cells for thermoelectric generators. Current Applied Physics 11 (4), S19-S22.
  • Chary, K.V.R., Sagar, G.V., Naresh, D., Seela, K.K., Sridhar, B. 2005. Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2−ZrO2. Journal of Physical Chemistry B 109 (19), 9437-9444.
  • Chen, A., Long, H., Li, X., Li, Y., Yang, G., Lu, P. 2009. Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum 83 (6), 927-930.
  • Hannachi, L., Bouarissa, N. 2009. Band parameters for cadmium and zinc chalcogenide compounds. Physica B 404, 3650-3654.
  • Herve, P., Vandamme, L.K.J. 1994. General relation between refractive index and energy gap in semiconductors. Infrared Physics & Technology 35, 609-615.
  • Jozefczak, A., Skumiel, A. 2011. Ultrasonic investigation of magnetic nanoparticles suspension with PEG biocompatible coating. Journal of Magnetism and Magnetic Materials 323, 1509-1516.
  • Kidowaki, H., Oku, T., Akiyama, T. 2012. Fabrication and characterization of CuO/ZnO solar cells. Journal of Physics: Conference Series 352 (1), 012022–012025.
  • Koh, T., O'Hara, E., Gordon, M.J. 2013. Growth of nanostructured CuO thin films via microplasma-assisted, reactive chemical vapor deposition at high pressures. Journal of Crystal Growth 363, 69-75.
  • Lim, Y.-F., Chua, C.S., Lee, C.J.J., Chi, D. 2014. Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Physical Chemistry Chemical Physics 16, 25928-25934.
  • Mageshwari, K., Sathyamoorthy, R. 2013. Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Materials Science in Semiconductor Processing 16 (2) 337-343.
  • Maity, R., Chattopadhyay, K.K. 2006. Synthesis and characterization of aluminum-doped CdO thin films by sol–gel process. Solar Energy Materials & Solar Cells 90 (5), 597-606.
  • Mezrag, F., Mohamed, W.K., Bouarissa, N. 2010. The effect of zinc concentration upon optical and dielectric properties of Cd1-xZnxSe. Physica B 405, 2272-2276.
  • Morales, J., Sánchez, L., Martín, F., Ramos-Barrado, J.R., Sánchez, M. 2005. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474 (1-2), 133-140.
  • Nair, M.T.S., Guerrero, L., Arenas, O.L., Nair, P.K. 1999. Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Applied Surface Science 150 (1-4), 143-151.
  • Nayan, N., Sahdan, M.Z., Wei, L.J., Ahmad, M.K., Lias, J., Fhong, S.C., Md Shakaff, A.Y., Zakaria, A., Zain, A.F.M. 2016. Correlation between microstructure of copper oxide thin films and its gas sensing performance at room temperature. Procedia Chemistry 20, 45-51.
  • Pathan, H.M., Lokhande, C.D. 2004. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bulletin of Materials Science 27, 85-111.
  • Roblesa, V., Trigoa, J.F., Guilléna, C., Herrero, J. 2014. Co-evaporated Tin Sulfide thin films on bare and Mo-coated glass substrates as photovoltaic absorber layers. Energy Procedia 44, 96-104.
  • Samarasekara, P., Kumara, N.T.R.N., Yapa, N.U.S. 2006. Sputtered copper oxide (CuO) thin films for gas sensor devices. Journal of Physics: Condensed Matter 18 (8), 2417-2420.
  • Shabu, R., Raj, A.M.E., Sanjeeviraja, C., Ravidhas, C. 2015. Assessment of CuO thin films for its suitability as window absorbing layer in solar cell fabrications. Materials Research Bulletin 68, 1-8.
  • Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S., Han, S.H. 2006. Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Materials Chemistry and Physics 96, 326-330.
  • Sun, S., Zhang, X., Sun, Y., Yang, S., Song, X., Yang, Z. 2013. Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor. Physical Chemistry Chemical Physics 15, 10904-10913.
  • Yıldırım, M.A., Ateş, A. 2010. Influence of films thickness and structure on the photo-response of ZnO films. Optics Communications 283, 1370-1377.
  • Yu, X., Marks, T.J., Facchetti, A. 2016. Metal oxides for optoelectronic applications. Nature Materials 15, 383-396.
  • Zhang, H., Yang, D., Ma, X., Du, N., Wu, J., Que, D. 2006. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. Journal of Physical Chemistry B 110, 827-830.