Nano $SiO_2$ Katkılı Çimento Harçlarının Mekanik Özelliklerine Yüksek Sıcaklığın Etkisi

Nano malzemelerin çimentolu kompozitlerde kullanımına yönelik çalışmalar her geçen gün artmaktadır. Özellikle nano $SiO_2$ üstünpuzolanik özelliği ve boşluk doldurma yeteneği sebebiyle en fazla kullanılan malzemelerden biridir. Yalnızca harç ya da betonundayanım özelliklerini değil dayanıklılık özelliklerini de nasıl etkilediğinin irdelenmesine yönelik araştırmalar sürmektedir. Yükseksıcaklık yapıların doğrudan ya da dolaylı olarak maruz kaldığı etkilerden biridir. Yapı malzemelerinin yüksek sıcaklık altındakidavranışlarının bilinmesi dayanıklılık açısından önemli bir husustur. Bu çalışmanın amacı nano $SiO_2$’in çimento harçlarının yükseksıcaklık direncine etkilerini belirlemektir. Bu amaca yönelik olarak %0, 1, 2 ve 3 oranlarında nano $SiO_2$ çimento ile ikame edilerek dörtfarklı harç karışımı hazırlanmıştır. 7, 28 ve 90. günlerde harç karışımları üzerinde eğilme ve basınç dayanımı deneylerigerçekleştirilmiştir. Nano $SiO_2$’in harçların yüksek sıcaklık direncine etkilerini belirlemek amacıyla, 50x50x50 $mm^3$ boyutlarındaüretilen örnekler 90 günlük kürün ardından 3 saat süresince 300 ve 600 ⁰C sıcaklıklara maruz bırakılarak fırın içinde kendiliğindensoğutulmuştur. Referans sıcaklık olarak 20 ⁰C kullanılmıştır. Yüksek sıcaklık uygulaması sonrasında sertleşmiş harç örneklerinin ağırlıkkaybı, ultrases geçiş hızı kaybı ve basınç dayanımları incelenmiştir. Ayrıca, 600 ⁰C sıcaklık sonrası mikro yapı incelemesi amacıylaörneklerin SEM görüntüleri alınmıştır. Sonuç olarak, 7. günde %2 nano $SiO_2$ ikamesinin eğilme dayanımını %20.0, basınç dayanımınıise referans karışıma göre %24.25 arttırdığı, özellikle erken yaştaki dayanıma olumlu etkisi olduğu belirlenmiştir. Sıcaklık arttıkçaağırlık kaybının arttığı ve ultrases geçiş hızının azaldığı, yüksek sıcaklık direnci için optimum nano $SiO_2$ oranının %2 olduğu, ancakçalışmanın maksimum sıcaklığı olan 600 ⁰C’de nano malzeme ikameli ve ikamesiz tüm karışımların kalan basınç dayanımı sonuçlarınınbirbirine çok yakın olduğu ve SEM görüntülerinde tüm örneklerde çatlaklar meydana geldiği tespit edilmiştir.

Effect of High Temperature on Mechanical Properties of Cement Mortar with Nano $SiO_2$

Studies for the use of nano materials in cementitious composites are increasing day by day. Especially nano $SiO_2$ is one of the most used materials due to its superior pozzolanic feature and space filling ability. Researchs continue to examine how nano $SiO_2$ affects not only the strength properties of mortar or concrete, but also its durability properties. High temperature is one of the effects that structures are exposed to directly or indirectly. Knowing the behavior of building materials under high temperature is an important issue in terms of durability. The aim of this study is to determine the effects of nano $SiO_2$ on the high temperature resistance of cement mortars. For this purpose, four different mortar mixes were prepared by 0, 1, 2 and 3% nano $SiO_2$ substituting cement. On the 7th, 28th and 90th days, flexural and compressive strength tests were carried out on the mortar mixtures. In order to determine the effects of nano $SiO_2$ on the high temperature resistance of mortars, the samples produced in the dimensions of 50x50x50 $mm^3$ were exposed to 300 and 600 ° C for 3 hours after 90 days of curing. The samples were then self-cooled in the oven. 20 ⁰C was used as reference temperature. After high temperature application, weight loss, loss of ultrasonic pulce velocity and compressive strenght of hardened mortar samples were examined. In addition, SEM images of the samples were taken for microstructure analysis after 600 ⁰C temperature. As a result, it was determined that on the 7th day, 2% nano SiO2 substitution increased the flexural strength by 20.0% and compressive strength by 24.25% compared to the reference mixture and had a positive effect especially on early age strength. It was determined that as the temperature increases, the weight loss increases and the ultrasonic pulce velocity decreases, the optimum nano $SiO_2$ ratio for high temperature resistance is 2%, but the residual compressive strenght results of all mixtures with and without nano material substitution at 600 ⁰C are very close to each other. In SEM images, cracks occurred in all samples.

___

  • Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516–522. https://doi.org/10.1016/j.firesaf.2007.01.003
  • Bekem Kara, I. (2019). The effect of nano silica on the properties of cement mortars containing micro silica at elevated temperatures. Revista Română de Materiale / Romanian Journal of Materials, 4, 518–526.
  • Bekem Kara, I. & Arslan, M. (2017). Investigation of High Temperature Effects on Concrete Additive Antifreeze. Aksaray University Journal of Science and Engineering, 2(1), 1–12. https://doi.org/10.29002/asujse.319487
  • Berra, M., Carassiti, F., Mangialardi, T., Paolini, A. E., & Sebastiani, M. (2012). Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Construction and Building Materials, 35, 666–675. https://doi.org/10.1016/j.conbuildmat.2012.04.132
  • Demirel, B., & Keleştemur, O. (2010). Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Safety Journal, 45(6–8), 385–391. https://doi.org/10.1016/j.firesaf.2010.08.002
  • Durmuş, G., & Bekem, I. (2010). Investigation of the effect of high temperatures end different cooling conditions on the concrete with calcerous aggregates. Journal of the Faculty of Engineering & Architecture of Gazi University, 25(4), 741–748.
  • El-Didamony Ahmed, H. (2017). Chemical and Engineering Properties of Blended Cement Containing Micro- and Nano-silica. American Journal of Chemical Engineering, 5(5), 111. https://doi.org/10.11648/j.ajche.20170505.13
  • Farzadnia, N., Abang Ali, A. A., Demirboga, R., & Anwar, M. P. (2013). Characterization of high strength mortars with nano Titania at elevated temperatures. Construction and Building Materials, 43, 469–479. https://doi.org/10.1016/j.conbuildmat.2013.02.044
  • Feng, P., Chang, H., Liu, X., Ye, S., Shu, X., & Ran, Q. (2020). The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Materials and Design, 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320
  • García-Taengua, E., Sonebi, M., Hossain, K. M. A., Lachemi, M., & Khatib, J. (2015). Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars. Composites Part B: Engineering, 81, 120– 129. https://doi.org/10.1016/j.compositesb.2015.07.009
  • Haruehansapong, S., Pulngern, T., & Chucheepsakul, S. (2014). Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Construction and Building Materials, 50, 471–477. https://doi.org/10.1016/j.conbuildmat.2013.10.002
  • Horszczaruk, E., Sikora, P., Cendrowski, K., & Mijowska, E. (2017). The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates. Construction and Building Materials, 137, 420–431. https://doi.org/10.1016/j.conbuildmat.2017.02.003
  • Huang, Q., Zhu, X., Zhao, L., Zhao, M., Liu, Y., & Zeng, X. (2020). Effect of nanosilica on sulfate resistance of cement mortar under partial immersion. Construction and Building Materials, 231, 117180. https://doi.org/10.1016/j.conbuildmat.2019.117180
  • Ibrahim, R. K., Hamid, R., & Taha, M. R. (2012). Fire resistance of high-volume fly ash mortars with nanosilica addition. Construction and Building Materials, 36, 779–786. https://doi.org/10.1016/j.conbuildmat.2012.05.028
  • Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Construction and Building Materials, 37, 707–715. https://doi.org/10.1016/j.conbuildmat.2012.08.006
  • Li, L. G., Zhu, J., Huang, Z. H., Kwan, A. K. H., & Li, L. J. (2017). Combined effects of micro-silica and nano-silica on durability of mortar. Construction and Building Materials, 157, 337–347. https://doi.org/10.1016/j.conbuildmat.2017.09.105
  • Ma, B., Wang, J., Tan, H., Li, X., Cai, L., Zhou, Y., & Chu, Z. (2019). Utilization of waste marble powder in cement-based materials by incorporating nano silica. Construction and Building Materials, 211, 139–149. https://doi.org/10.1016/j.conbuildmat.2019.03.248
  • Naji Givi, A., Abdul Rashid, S., Aziz, F. N. A., & Salleh, M. A. M. (2010). Experimental investigation of the size effects of SiO2 nanoparticles on the mechanical properties of binary blended concrete. Composites Part B: Engineering, 41(8), 673–677. https://doi.org/10.1016/j.compositesb.2010.08.003
  • Newell, M., & Garcia-Taengua, E. (2019). Fresh and hardened state properties of hybrid graphene oxide/nanosilica cement composites. Construction and Building Materials, 221, 433–442. https://doi.org/10.1016/j.conbuildmat.2019.06.066
  • Pathak, N., & Siddique, R. (2012). Properties of self-compacting-concrete containing fly ash subjected to elevated temperatures. Construction and Building Materials, 30, 274–280. https://doi.org/10.1016/j.conbuildmat.2011.11.010
  • Reches, Y., Thomson, K., Helbing, M., Kosson, D. S., & Sanchez, F. (2018). Agglomeration and reactivity of nanoparticles of SiO2, TiO2, Al2O3, Fe2O3, and clays in cement pastes and effects on compressive strength at ambient and elevated temperatures. Construction and Building Materials, 167, 860–873. https://doi.org/10.1016/j.conbuildmat.2018.02.032
  • Rong, Z., Zhao, M., & Wang, Y. (2020). Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites. Materials, 13(3). https://doi.org/10.3390/ma13030646
  • Sadeghi Nik, A., & Lotfi Omran, O. (2013). Estimation of compressive strength of self-compacted concrete with fibers consisting nanoSiO2 using ultrasonic pulse velocity. Construction and Building Materials, 44, 654–662. https://doi.org/10.1016/j.conbuildmat.2013.03.082
  • Sonebi, M., García-Taengua, E., Hossain, K. M. A., Khatib, J., & Lachemi, M. (2015). Effect of nanosilica addition on the fresh properties and shrinkage of mortars with fly ash and superplasticizer. Construction and Building Materials, 84, 269–276. https://doi.org/10.1016/j.conbuildmat.2015.02.064
  • TS EN 12504-4. (2012). Testing concrete - Part 4: Determination of ultrasonic pulse velocity. Turkish Standard Institute, Ankara, Turkey.
  • TS EN 196-1. (2016). Methods of testing cement - Part 1: Determination of strength. Turkish Standard Institute, Ankara, Turkey.
  • TS EN 197-1. (2012). Cement - Part 1: Composition, specifications and conformity criteria for common cements. Turkish Standard Institute, Ankara, Turkey.
  • Wu, Z., Shi, C., Khayat, K. H., & Wan, S. (2016). Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites, 70, 24–34. https://doi.org/10.1016/j.cemconcomp.2016.03.003