Mn Katkılı Grafen Yüzey Üzerinde NH3 Olmadan NO’nun Katalitik İndirgenmesi: Bir Yoğunluk Fonksiyonel Teorisi Çalışması

Nitrojen oksit (NO) fosil yakıtların yanması sonucunda ortaya çıkan önemli bir hava kirleticisidir. Katalitik olarak seçici katalizörler üzerinde NO indirgenme reaksiyonları yoluyla onun zararlı etkileri önemli ölçütlerde azaltılabilir. Mn katkılı grafen sistemler deneysel olarak sentezlenebilir ve nispeten az sayıda Mn (manganez) atomu kullanımı nedeniyle ilerleyen zaman içerisinde tek atom kristal yüzeylerine göre çok daha düşük maliyetli olması ön görülmektedir. Bu çalışmada Mn katkılı grafen yüzey üzerinde NO indirgenme reaksiyonu yoğunluk fonksiyonel teorisi yoluyla incelenmiştir. Mn katkılı grafen yüzeyin yapısal özellikleri bader yük analizi ve elektron yoğunluğu farkı haritası ile analiz edildi. NO indirgenmesi için, NO moleküllerinin farklı adsorpsiyon durumlarına göre iki farklı reaksiyon yolu düşünüldü. Bizim hesaplama sonuçlarımız göstermiştir ki, birinci reaksiyonu yolu üzerinde reaksiyon 0.27 eV ve 0.59 eV enerji bariyerleri ile iki geçiş durumu sonunda gerçekleşirken, diğer reaksiyon yolu 0.42 eV enerji bariyeri ile direkt olarak gerçekleşmektedir. Bu sonuçlar, her iki reaksiyon yolu üzerinde Mn katkılı grafen katalizörün yüksek katalitik aktiviteye sahip olduğunu göstermiştir. Bu bilgiler, NO’nun uzaklaştırılması için grafen tabanlı malzemeler üzerinde farklı stratejiler geliştirmek için kullanılabilir. 

Catalytic Reduction Of NO Without NH3 On Mn Embedded Graphene: A Density Of Functional Theory Study

Nitrogen oxide (NO) is an important air pollutant that occurs as a result of burning fossil fuels. Through NO reduction reactions on catalytically selective catalysts, its detrimental effects can be significantly reduced. Mn-doped graphene systems can be synthesized experimentally, and due to the use of relatively few Mn (manganese) atoms, it is anticipated that they will cost much less than single-atom crystal surfaces over time. In this study, NO reduction reaction on Mn doped graphene surface was investigated by density functional theory. The structural properties of the Mn-doped graphene surface were analyzed by bader charge analysis and electron density difference map. For the reduction of NO, two different reaction paths were considered according to the different adsorption conditions of NO molecules. Our calculation results showed that, on the first reaction path, the reaction takes place at the end of two transition states with energy barriers of 0.27 eV and 0.59 eV, while the other reaction path takes place directly with an energy barrier of 0.42 eV. These results showed that the Mn doped graphene catalyst has high catalytic activity on both reaction paths. This information can be used to develop different strategies on graphene-based materials for NO removal.

___

  • Chun, H. J., Apaja, V., Clayborne, A., Honkala, K., Greeley, J., (2017). Atomistic insights into nitrogen-cycle electrochemistry: A combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt (100). ACS Catalysis, 7(6):3869-3882.
  • Esrafili, M.D., (2018). NO reduction by CO molecule over Si-doped boron nitride nanosheet: a dispersion-corrected DFT study. Chemical Physics Letters, 695:131-137.
  • Esrafili, M.D., Asadollahi, S., Heydari, S., (2019). A DFT study on NO reduction to N2O using Al-and P-doped hexagonal boron nitride nanosheets. Journal of Molecular Graphics and Modelling, 89:41-49.
  • Esrafili, M.D., Saeidi, N., (2017). Catalytic reduction of NO by CO molecules over Ni-doped graphene: a DFT investigation. New Journal of Chemistry, 41(21):13149-13155.
  • Impeng, S., Junkaew, A., Maitarad, P., Kungwan, N., Zhang, D., Shi, L., Namuangruk, S., (2019). A MnN4 moiety embedded graphene as a magnetic gas sensor for CO detection: A first principle study. Applied Surface Science, 473:820-827.
  • Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., Meng, X., (2017). A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: catalysts, mechanisms, kinetics and DFT calculations. Catalysts, 7(7):199.
  • Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., Baroni, S., (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46):465901.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Wentzcovitch, R.M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39):395502.
  • Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15):154104.
  • Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1):1-17.
  • Henkelman, G., Uberuaga, B. P., Jónsson, H., (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, 113(22):9901-9904.
  • Huai, L. Y., He, C. Z., Wang, H., Wen, H., Yi, W. C., & Liu, J. Y., (2015). NO dissociation and reduction by H2 on Pd (1 1 1): A first-principles study. Journal of Catalysis, 322:73-83.
  • Jiang, Q., Zhang, J., Ao, Z., Huang, H., He, H., Wu, Y., (2018). First principles study on the CO oxidation on Mn-embedded divacancy graphene. Frontiers in chemistry, 6:187.
  • Jónsson, H., Mills, G., Jacobsen, K.W., (1998). Nudged elastic band method for finding minimum energy paths of transitions.
  • Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., Nieminen, R.M., (2009). Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Physical review letters, 102(12):126807.
  • Kresse, G., Joubert, D., (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3):1758.
  • Lu, Y.H., Zhou, M., Zhang, C., Feng, Y.P., (2009). Metal-embedded graphene: a possible catalyst with high activity. The Journal of Physical Chemistry C, 113(47):20156-20160.
  • Luo, M., Liang, Z., Chen, M., Peera, S.G., Liu, C., Yang, H., Liang, T. (2020). Catalytic oxidation mechanisms of carbon monoxide over single-and double-vacancy Mn-embedded graphene. New Journal of Chemistry, 44(22):9402-9410.
  • Maitarad, P., Junkaew, A., Promarak, V., Shi, L., Namuangruk, S., (2020). Complete catalytic cycle of NO decomposition on a silicon-doped nitrogen-coordinated graphene: Mechanistic insight from a DFT study. Applied Surface Science, 508:145255.
  • Monkhorst, H.J., Pack, J.D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12):5188.
  • Saeidi, N., Esrafili, M. D., Sardroodi, J.J., (2021). NO electrochemical reduction over Si-N4 embedded graphene: A DFT investigation. Applied Surface Science, 544: 148869.
  • Seker, E., Cavataio, J., Gulari, E., Lorpongpaiboon, P., Osuwan, S., (1999). Nitric oxide reduction by propene over silver/alumina and silver–gold/alumina catalysts: effect of preparation methods. Applied Catalysis A: General, 183(1):121-134.
  • Song, E.H., Yan, J.M., Lian, J.S., Jiang, Q., (2012). External electric field catalyzed N2O decomposition on Mn-embedded graphene. The Journal of Physical Chemistry C, 116(38):20342-20348.
  • Taylor, K. C., Schlatter, J.C., (1980). Selective reduction of nitric oxide over noble metals. Journal of Catalysis, 63(1):53-71.
  • Yang, C.K., (2009). A metallic graphene layer adsorbed with lithium. Applied Physics Letters, 94(16):163115.
  • Yang, W., Gao, Z., Liu, X., Ma, C., Ding, X., Yan, W., (2019). Directly catalytic reduction of NO without NH3 by single atom iron catalyst: A DFT calculation. Fuel, 243:262-270.
  • Zhang, X., Xie, M., Wu, H., Lv, X., Zhou, Z., (2020). DFT study of the effect of Ca on NO heterogeneous reduction by char. Fuel, 265:116995.
  • Zhou, M., Lu, Y. H., Cai, Y. Q., Zhang, C., Feng, Y.P., (2011). Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology, 22(38):385502.