Mikrobiyal Yakıt Hücrelerinde Kullanılan Polimer Bazlı Membranlarla İlgili Son Gelişmeler

Fosil yakıtların gelecekteki enerji ihtiyacını karşılayamayacak olması ve canlıların yaşamını sürdürebilmesi için hayati öneme sahip su kaynaklarını kirletmesi, günümüzde enerji gereksinimi ve su kirliliği gibi iki büyük probleme sebep olmaktadır. Yakıt hücrelerinin özel bir sınıfı olan Mikrobiyal Yakıt Hücresi (MYH) sistemleri, atık su arıtımı yaparak yeşil enerji sağladıkları ve fosil yakıtlara olan ihtiyacı azalttıkları için günümüzde üzerinde en fazla çalışma gerçekleştirilen teknolojilerden biridir. Bu cihazlardaki verim, büyük ölçüde MYH sistemlerinin önemli bileşeni olan membranlara ve özelliklerine bağlıdır. MYH sistemlerinde en fazla tercih edilen membran, 80⁰C’ye kadar yüksek verime sahip Dupont firması tarafından üretilen Nafyon ticari membranıdır. Nafyon membran, pahalı ve MYH sistemlerinin performansını düşürecek kısıtlara sahip olduğundan araştırmacılar, Nafyon’a alternatif olabilecek yüksek verim ve uygun fiyatlı membran sentezi üzerine yoğunlaşmışlardır. Polimer malzemeler; uygun fiyatları ve kolay işlenebilirlikleri ile en fazla tercih edilen membran malzemeleridir. Bu derleme makalesinde son yıllarda gerçekleştirilen polimer bazlı kompozit, blend, Nafyon modifiye ve son yıllarda daha yüksek verim getireceği düşünüldüğü için çalışmaların yoğunlaştığı bipolar (çift kutuplu) membranlar incelenmiştir. İncelenen çalışmalarda MYH sistemlerinin ticarileşmesi açısından umut vadeden sonuçlar elde edildiği görülmüştür.

Recent Development of Polymer Based Membranes in Microbial Fuel Cells

Since fossil fuels cannot provide the energy needs of the future and that they pollute the water resources that are vital for the survival of living things cause two major problems today; energy scarcity and water pollution. Microbial Fuel Cell (MFC) systems, which are a special class of fuel cells, are one of the most studied technologies today, as they provide green energy by treating wastewater and reduce the need for fossil fuels. The efficiency of these devices is highly dependent on the types and the properties of the membranes, which are important components of MFC systems. The most widely used membrane in MFC systems is the Nafion commercial membrane produced by Dupont, which has high efficiency of up to 80 ⁰C. Since Nafion membrane is expensive and has some limitations that will reduce the performance of MFC systems, researchers focused on high efficiency and affordable membrane synthesis, which can be an alternative to Nafion. Polymer materials are the most preferred membrane materials with theirreasonable prices and easy workability. In this review article, polymer-based composite, blend, Nafion modified, and bipolar membranes, which have been focused on because it is thought to bring higher efficiency in recent years, have been examined. It has been seen that promising results for the commercialization of MFC systems were obtained in investigated studies.

___

  • Al-Taie, Z. A., Shihab, M. S., & Allami, S. (2021). Blend Modified Polymers (Polyethersulfone, Expandable Polystyrene, Polyvenylidinefluride) as a Membrane for Microbial Fuel Cell. AlNahrain Journal of Science, 24(2), 9-13.
  • Angioni, S., Millia, L., Bruni, G., Ravelli, D., Mustarelli, P., & Quartarone, E. (2017). Novel composite polybenzimidazole-based proton exchange membranes as efficient and sustainable separators for microbial fuel cells. Journal of Power Sources, 348, 57-65.
  • Angioni, S., Millia, L., Bruni, G., Tealdi, C., Mustarelli, P., & Quartarone, E. (2016). Improving the performances of Nafion™-based membranes for microbial fuel cells with silica-based, organically-functionalized mesostructured fillers. Journal of Power Sources, 334, 120-127.
  • Arora, B., & Attri, P. (2020). Carbon nanotubes (CNTs): a potential nanomaterial for water purification. Journal of Composites Science, 4(3), 135.
  • Azhar, M., Jaafar, J., Aziz, M., Umar, Y., Jafar Mazumder, M. A., & Nazal, M. K. (2021). Mild sulfonated polyether ketone ether ketone ketone incorporated polysulfone membranes for microbial fuel cell application. Journal of Applied Polymer Science, 138(15), 50216.
  • Barbir, F. (2013). PEM Fuel Cells (Vol. 2). USA: Elsevier.
  • Bavasso, I., Bracciale, M. P., Sbardella, F., Puglia, D., Dominici, F., Torre, L., . . . Xin, W. (2021). Sulfonated Fe3O4/PES nanocomposites as efficient separators in microbial fuel cells. Journal of Membrane Science, 620, 118967.
  • Bavasso, I., Di Palma, L., Puglia, D., Luzi, F., Dominici, F., Tirillò, J., . . . Torre, L. (2020). Effect of Pretreatment of Nanocomposite PES‐Fe3O4 Separator on Microbial Fuel Cells Performance. Polymer Engineering & Science, 60(2), 371-379.
  • Dharmalingam, S., Kugarajah, V., & Sugumar, M. (2019). Membranes for microbial fuel cells. In Microbial Electrochemical Technology (pp. 143-194): Elsevier.
  • Di Palma, L., Bavasso, I., Sarasini, F., Tirillò, J., Puglia, D., Dominici, F., & Torre, L. (2018). Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. European Polymer Journal, 99, 222-229.
  • Durmuş Kaya, H. Ö. (2012). Yakıt Pili Teknolojisi. Kocaeli: Umuttepe Yayınları.
  • Fan, L., Shi, J., & Xi, Y. (2020). PVDF-modified Nafion membrane for improved performance of MFC. Membranes, 10(8), 185.
  • Ghasemi, M., Daud, W. R. W., Alam, J., Ilbeygi, H., Sedighi, M., Ismail, A. F., . . . Aljlil, S. A. (2016). Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/Sulfonated poly ether ether ketone hybrid membrane. Energy, 96, 303-313.
  • Ghasemi, M., Daud, W. R. W., Alam, J., Jafari, Y., Sedighi, M., Aljlil, S. A., & Ilbeygi, H. (2016). Sulfonated poly ether ether ketone with different degree of sulphonation in microbial fuel cell: Application study and economical analysis. International journal of hydrogen energy, 41(8), 4862-4871.
  • Harewood, A., Popuri, S., Cadogan, E., Lee, C.-H., & Wang, C.-C. (2017). Bioelectricity generation from brewery wastewater in a microbial fuel cell using chitosan/biodegradable copolymer membrane. International Journal of Environmental Science and Technology, 14(7), 1535-1550.
  • Harun, N. A. M., Shaari, N., & Nik Zaiman, N. F. H. (2021). A review of alternative polymer electrolyte membrane for fuel cell application based on sulfonated poly (ether ether ketone). International Journal of Energy Research.
  • Hernández-Flores, G., Poggi-Varaldo, H., & SolorzaFeria, O. (2016). Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells. International journal of hydrogen energy, 41(48), 23354-23362.
  • Jung, H.-Y., & Roh, S.-H. (2020). Polyvinylidene fluoride nanofiber composite membrane coated with perfluorinated sulfuric acid for microbial fuel cell application. Journal of nanoscience and nanotechnology, 20(9), 5711-5715. Retrieved from https://www.ingentaconnect.com/content/asp/jnn/2020/00000020/00000009/art00070;jsessionid=48k7ksmoa69k0.x-ic-live-01
  • Kadıoğlu, M. (2008). Küresel İklim Değişimi ve Türkiye (Vol. 4). İstanbul: Güncel Yayıncılık.
  • Kim, C., Lee, C. R., Song, Y. E., Heo, J., Choi, S. M., Lim, D.-H., . . . Kim, J. R. (2017). Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater. Chemical Engineering Journal, 328, 703-707.
  • Kim, J. M., & Patel, R. (2020). Review on proton exchange membranes for microbial fuel cell application. Membrane Journal, 30(4), 213-227.
  • Kugarajah, V., & Dharmalingam, S. (2020a). Investigation of a cation exchange membrane comprising Sulphonated Poly Ether Ether Ketone and Sulphonated Titanium Nanotubes in Microbial Fuel Cell and preliminary insights on microbial adhesion. Chemical Engineering Journal, 398, 125558.
  • Kugarajah, V., & Dharmalingam, S. (2020b). Sulphonated polyhedral oligomeric silsesquioxane/sulphonated poly ether ether ketone nanocomposite membranes for microbial fuel cell: Insights to the miniatures involved. Chemosphere, 260, 127593.
  • Kumar, P., & Bharti, R. P. (2019). Nanocomposite polymer electrolyte membrane for high performance microbial fuel cell: Synthesis, characterization and application. Journal of the Electrochemical Society, 166(15), F1190.
  • Kumar, V., Kumar, P., Nandy, A., & Kundu, P. P. (2016). A nanocomposite membrane composed of incorporated nano-alumina within sulfonated PVDF-co-HFP/Nafion blend as separating barrier in a single chambered microbial fuel cell. RSC advances, 6(28), 23571-23580.
  • Kumar, V., Mondal, S., Nandy, A., & Kundu, P. P. (2016). Analysis of polybenzimidazole and polyvinylpyrrolidone blend membranes as separating barrier in single chambered microbial fuel cells. Biochemical Engineering Journal, 111, 34-42.
  • Li, C., Song, Y., Wang, X., & Zhang, Q. (2020). Synthesis, characterization and application of STiO2/PVDF-g-PSSA composite membrane for improved performance in MFCs. Fuel, 264, 116847.
  • Li, W.-W., Sheng, G.-P., Liu, X.-W., & Yu, H.-Q. (2011). Recent advances in the separators for microbial fuel cells. Bioresource technology, 102(1), 244-252.
  • Liew, K. B., Leong, J. X., Daud, W. R. W., Ahmad, A., Hwang, J. J., & Wu, W. (2020). Incorporation of silver graphene oxide and graphene oxide nanoparticles in sulfonated polyether ether ketone membrane for power generation in microbial fuel cell. Journal of Power Sources, 449, 227490.
  • Mondal, S., Papiya, F., Ash, S. N., & Kundu, P. P. (2021). Composite membrane of sulfonated polybenzimidazole and sulfonated graphene oxide for potential application in microbial fuel cell. Journal of Environmental Chemical Engineering, 9(1), 104945.
  • Mousavi, S. A. (2016). Effect of casting solvent on the characteristics of Nafion/TiO2 nanocomposite membranes for microbial fuel cell application. International journal of hydrogen energy, 41(1), 476-482.
  • Nagar, H., & Aniya, V. (2020). Microporous material induced composite membrane with reduced oxygen leakage for MFC application. Journal of Environmental Chemical Engineering, 8(5), 104117.
  • Nagar, H., Anusha, G., & Sridhar, S. (2017). Sulfonated polyethersulfone/torlon blend membrane incorporated with multiwalled carbon nanotubes for energy production from kitchen wastewater using microbial fuel cell. In Energy engineering(pp. 163-167): Springer.
  • Nagar, H., Badhrachalam, N., Rao, V. B., & Sridhar, S. (2019). A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation. Materials chemistry and physics, 224, 175-185.
  • Nurettin Çek, A. E. (2020). Yakıt Hücresi Teknolojilerinde Gelişmeler (Vol. 1). Ankara: Nobel.
  • Pandit, S., Savla, N., & Jung, S. P. (2020). Recent advancements in scaling up microbial fuel cells. In Integrated microbial fuel cells for wastewater treatment (pp. 349-368): Elsevier.
  • Pärnamäe, R., Mareev, S., Nikonenko, V., Melnikov, S., Sheldeshov, N., Zabolotskii, V., . . . Tedesco, M. (2021). Bipolar membranes: A review on principles, latest developments, and applications. Journal of Membrane Science, 617, 118538.
  • Rahimnejad, M., Ghasemi, M., Najafpour, G., Ismail, M., Mohammad, A., Ghoreyshi, A., & Hassan, S. H. (2012). Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochimica Acta, 85, 700-706.
  • Roshanravan, B., Younesi, H., Abdollahi, M., Rahimnejad, M., & Pyo, S.-H. (2021). Application of proton-conducting sulfonated polysulfone incorporated MIL-100 (Fe) composite materials for polymer-electrolyte membrane microbial fuel cells. Journal of Cleaner Production, 300, 126963.
  • Rudra, R., Kumar, V., Pramanik, N., & Kundu, P. P. (2017). Graphite oxide incorporated crosslinked polyvinyl alcohol and sulfonated styrene nanocomposite membrane as separating barrier in single chambered microbial fuel cell. Journal of Power Sources, 341, 285-293.
  • Shabani, M., Younesi, H., Pontié, M., Rahimpour, A., Rahimnejad, M., & Zinatizadeh, A. A. (2020). A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. Journal of Cleaner Production, 264, 121446.
  • Sirajudeen, A. A. O., Annuar, M. S. M., Ishak, K. A., Yusuf, H., & Subramaniam, R. (2021). Innovative application of biopolymer composite as proton exchange membrane in microbial fuel cell utilizing real wastewater for electricity generation. Journal of Cleaner Production, 278, 123449.
  • Sivasankaran, A., Sangeetha, D., & Ahn, Y.-H. (2016). Nanocomposite membranes based on sulfonated polystyrene ethylene butylene polystyrene (SSEBS) and sulfonated SiO2 for microbial fuel cell application. Chemical Engineering Journal, 289, 442-451.
  • Sowmya, G., & Prabhu, M. R. (2018). Fabrication of blend polymer electrolyte membrane with poly (amide imide)-sulfonated poly (ether ether ketone) for microbial fuel cell. Materials Research Express, 6(2), 025519.
  • Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., . . . Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491.
  • Terbish, N., Lee, C.-H., Popuri, S. R., & Nalluri, L. P. (2020). An investigation into polymer blending, plasticization and cross-linking effect on the performance of chitosan-based composite proton exchange membranes for microbial fuel cell applications. Journal of Polymer Research, 27(9), 1-14.
  • Tiwari, B., Noori, M. T., & Ghangrekar, M. (2016). A novel low cost polyvinyl alcohol-Nafionborosilicate membrane separator for microbial fuel cell. Materials chemistry and physics, 182, 86-93.
  • Venkatesan, P. N., & Dharmalingam, S. (2017). Characterization and performance study of phase inversed Sulfonated Poly Ether Ether Ketone–Silico tungstic composite membrane as an electrolyte for microbial fuel cell applications. Renewable Energy, 102, 77-86.
  • Wang, H., Song, X., Zhang, H., Tan, P., & Kong, F. (2020). Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes. Journal of hazardous materials, 384, 121459.
  • Wang, H., Zhang, H., Zhang, X., Li, Q., Cheng, C., Shen, H., & Zhang, Z. (2020). Bioelectrochemical remediation of Cr (VI)/Cd (II) contaminated soil in bipolar membrane microbial fuel cells. Environmental research, 186, 109582.
  • Wu, H., Fu, Y., Guo, C., Li, Y., Jiang, N., & Yin, C. (2018). Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater. Bioresource technology, 260, 130-134.
  • Xu, Q., Wang, L., Li, C., Wang, X., Li, C., & Geng, Y. (2019). Study on improvement of the proton conductivity and anti-fouling of proton exchange membrane by doping SGO@ SiO2 in microbial fuel cell applications. International journal of hydrogen energy, 44(29), 15322-15332.
  • Yakıt Pili Katalizörleri. (2019). (H. D. Kıvrak Ed.): Gece Kitaplığı.
  • Zinadini, S., Zinatizadeh, A., Rahimi, M., Vatanpour, V., & Rahimi, Z. (2017). High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane. Energy, 125, 427-438.