İlk Uç Yer değiştirmesine Maruz Kalan Elastik Çubukta Gerilme Dağılımı

Bu çalışma, farklı malzemelerden yapılmış bir elastik çubuk içerisindeki yer-değiştirme ve gerilme dağılımlarını incelemek için hesaplamalı bir yöntem sunmaktadır. Çelik, alüminyum alaşımları ve titanyum alaşımları otomotiv, havacılık, enerji ve tıbbi uygulamalar gibi birçok mühendislik alanında yaygın olarak kullanılmaktadır. Bu nedenle, bu malzemelerden imal edilen elastik çubuklarda dinamik yer-değiştirme ve gerilme dağılımları büyük önem taşımaktadır. Yer-değiştirme ve gerilmeyi elde etmek için dalga yayılım problemi tek boyutlu (1-D) dalga denklemi esas alınarak modellenmiştir. Sınır koşulları sabit-serbest olarak kabul edilmiştir ve elastik çubuk başlangıçta serbest uçta uç yer-değiştirmesine maruz bırakılmıştır. Analitik çözüm, değişkenlerin ayrılması yoluyla gerçekleştirilir ve doğal frekanslar ve yer-değiştirme dağılımları bulunur. Hesaplamalı yöntem açık (explicit) şema kullanılarak uzay ve zaman parametrelerinde dalga denkleminin ayrıklaştırılmasına dayalı olarak geliştirilmiştir. Elastik çubuk içindeki yer-değiştirme ve gerilme dağılımı hesaplamalı olarak elde edilir. Analitik ve hesaplamalı olarak elde edilen sonuçlar karşılaştırılır ve mükemmel bir uyum sağlanır. Daha sonra, zaman, uç yük seviyesi ve malzeme tipinin yer-değiştirme ve gerilme dağılımlarına olan etkisini incelemek için parametrik analizler yapılır. Geliştirilen hesaplamalı yöntemin farklı tür malzemelerden imal edilmiş elastik çubukta yer-değiştirme ve gerilme dağılımlarının doğru şekilde belirlenmesinde hızlı ve güvenilir olduğu gözlemlenmiştir.

Stress Distribution in an Elastic Rod Subjected to Initial Tip Displacement

This study presents computational method to examine the displacement and stress distribution within an elastic rod made of different materials. Steel, aluminum alloys and titanium alloys have been widely used in many engineering fields such as automotive, aerospace, energy and medical applications. Hence, dynamic displacement and stress distributions in elastic rods manufactured by these materials has a crucial importance. In order to obtain displacement and stress, wave propagation problem is modeled based on one dimensional (1-D) wave equation. Boundary conditions are assumed as fixed-free, and elastic rod is subjected to tip displacement at free end, initially. Analytical solution is performed by means of separation of variables, and natural frequencies and displacement distributions are found. Computational method is developed based on the discretization of wave equation in space and time parameters utilizing explicit scheme. Displacement and stress distribution within the elastic rod is obtained computationally. Analytically and computationally obtained results are compared, and excellent agreement is achieved. Then, parametric analyses are conducted to examine the influences of time, the level of tip load and material type on displacement and stress distributions. It is observed that developed computational method is fast and reliable in accurate determination of displacement and stress within elastic rod made of various kinds of materials.

___

  • Inagaki, I., Takechi, T., Shirai, Y., Ariyasu, N. (2014). Application and features of titanium for the aerospace industry. Nippon Steel & Sumitomo Metal Technical Report, 22-27.
  • Boyer, R.R. (1996). An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 213(1), 103-114.
  • Singh, P., Pungotra, H., Kalsi, N.S. (2017). On the characteristics of titanium alloys for the aircraft applications. Materials Today Proceedings, 4(8), 8971-8982.
  • Uhlmann, E., Kersting, R., Klein, T.B., Cruz, M.F., Borille, A.V. (2015). Additive manufacturing of titanium alloy for aircraft components. Proc. CIRP, 35, 55-60.
  • Jeon, G.T., Kim, K.Y., Moon, J-H., Lee, C., Kim, W-J., Kim, S.J. (2018). Effect of Al6061 Alloy Compositions on Mechanical Properties of the Automotive Steering Knuckle Made by Novel Casting Process. Metals, 8, Article 857.
  • Sharma, M.M., Ziemian, C.W., Eden, T.J. (2011). Fatigue behaviour of SiC particulate reinforced spray-formed 7xxx series al-alloys. Materials & Design, 32, 4304-4309.
  • Vijayarangan, S., Rajamanickam, N., Sivanant, V. (2013). Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle. Materials & Design, 43, 532-541.
  • Prescott, M.A. (1942). Elastic Waves and Vibrations of Thin Rods. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33(225), 703-754.
  • Kolsky, H. (1954). The propagation of longitudinal elastic waves along cylindrical bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(366), 712-726.
  • Hutchinson, J.R. (1972). Axisymmetric vibrations of a free finite length rod. Journal of the Acoustical Society of America, 51, 233-240.
  • Hutchinson, J.R. (1980). Vibrations of solid cylinders. Journal of Applied Mechanics. 47, 901-907.
  • Xu, D., Du, J., Liu, Z. (2019). An accurate and efficient series solution for the longitudinal vibration of elastically restrained rods with arbitrarily variable cross sections. Journal of Low Frequency Noise, Vibration and Active Control, 38(2), 403-414.
  • Yang, H., Li, Y., Zhou, F. (2021). Propagation of stress pulses in a Rayleigh-Love elastic rod. International Journal of Impact Engineering, 153, Article 103854.
  • Cangellaris, A.C. (1993). Numerical Stability and Numerical Dispersion of a Compact 2-D/FDTD Method Used for the Dispersion Analysis of WaveGuides. IEEE Microwave and Guided Letters, 3(1), 3-5.
  • Matweb. (2021). www.matweb.com. Matweb material property data. Online Accessed: 05/10/2021.