Kentsel Yüzey Isı Adalarının Belirlenmesinde Yer Yüzey Sıcaklık Verilerinin Kullanımı

Kentsel ısı adası (KIA) etkisi çevre, enerji ve sağlık sorunlarına neden olmaktadır. Hava sıcaklığındaki kentsel-kırsal farklılıklar, yer yüzeyinden yansıyan ışınlardan doğrudan etkilenmektedir. Kentsel Arazi örtüsü/arazi kullanımı (AÖ/AK) ve değişimleri YYS’yi önemli ölçüde etkilemektedir. Bu çalışmada, Adana kent merkezi için kış ve yaz mevsiminde LANDSAT 8 OLI/TIRS uydusundan yer yüzeyine dayalı ölçümlerden elde edilen YYS ile kentsel AÖ/AK’nın kentsel yüzey ısı adası (SUHI) üzerindeki etkileri incelenmiştir. YYS sıcaklığı kış aylarında en yüksek Kesikli/Süreksiz Orta Yoğun Şehir Yapısında (%30-%50) (28,4℃), Endüstiyel ve Ticari birimlerde (24,1℃) ve İzole yapılarda (18,8℃) görülmüştür. Yaz aylarında ise en yüksek Endüstriyel ve Ticari birimlerde (47,8℃), Karayolları ve İlgili Alanlarda (42℃), Spor ve eğlence alanlarında (40,1℃) ve Sürekli şehir yapısında (40,0℃) görülmüştür. Kentsel dokudaki geçirgen yüzeylerin geçirimsiz yüzeylere hızlı bir şekilde dönüştürülmesiyle kentsel yüzey ısı dalgalarının ortaya çıkmasına neden olmaktadır. Bu çalışmada da geniş geçirimsiz yüzeylere sahip olan havalimanı ile Endüstriyel ve Ticari birimlerinde SUHI yoğunluğunun en yüksek olduğu alanlardır. SUHI yoğunluğunun yüksek olduğu bu alanlarda YYS sıcaklığının azaltılması Adana kentinin mekânsal plancılarına gelecekte planlı ve sürdürülebilir kentsel gelişimin sağlanması için iklime duyarlı planlamaya etkin bir şekilde odaklanılması gerekliliğini göstermektedir.

Use of Land Surface Temperature Data to Determine Urban Surface Heat Island

The urban heat island (UHI) effect causes environmental, energy and health problems. Urban-rural differences in air temperature are directly affected by the surface reflectance. Urban Land use/land cover (LULC) and its changes significantly affect land surface temperature (LST). In this study, the effects of the urban LULC on the urban surface heat island (SUHI) were analyzed with the LST obtained from the earth surface-based measurements from the LANDSAT 8 OLI/TIRS satellite in winter and summer seasons for Adana city center. LST is highest in Discontinuous Medium Density Urban Fabric (30% - 50%) (28.4 ℃), Industrial and Commercial units (24.1 ℃) and Isolated structures (18.8 ℃) in winter months. In summer season, Higher LST is seen in Industrial and Commercial units (47.8 ℃), Highways and Associated Land (42 ℃), Sports and leisure facilities (40.1 ℃) and Continuous urban fabric (40.0 ℃). The rapid transformation of pervious surfaces in the urban fabric into impervious surfaces causes the emergence of urban surface heat waves. In this study, the airport and Industrial and Commercial units, which have impervious surfaces, are the areas with the highest SUHI density. Reducing the LST temperature in these areas with high SUHI density shows the spatial planners of the city of Adana that it is necessary to focus effectively on climate-sensitive urban planning in order to ensure planned and sustainable urban development in the future.

___

  • Agarwal, R., Sharma, U., & Taxak, A. (2014). Remote sensing based assessment of urban heat island phenomenon in Nagpur Metropolitan Area. International Journal of Computers and Technology, 4(11), 1069 1074.
  • Arifwidodo, S. D., & Chandrasiri, O. (2020). Urban heat stress and human health in Bangkok, Thailand. Environmental Research, 185(March), 109398. https://doi.org/10.1016/j.envres.2020.109398.
  • Basavaprasad, B., Ravi, M., 2014. A study on the importance of image processing and its applications. Int. J. Res. Eng. Technol. 3.
  • Chavez, P.S., 1996. Image-based atmospheric corrections-revisited and improved. Photogramm. Eng. Remote. Sens. 62 (9), 1025–1035.
  • Chen, Y.C., Chiu, H.W., Su, Y.F., Wu, Y.C., Cheng, K.S., 2017. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landsc. Urban Plan. 157, 247–258.
  • Das, M., Das, A., 2019a. Estimation of ecosystem services (EESs) loss due to transformation of LCZs(LCZs) in sriniketan-santiniketan planning area (SSPA) West Bengal, India. Sustainable Cities and Society 47, 101474. https://doi.org/ 10.1016/j.scs.2019.101474.
  • Das, M., Das, A., 2019b. Dynamics of Urbanization and its impact on urban ecosystem services (UESs): a study of a medium size town of West Bengal, Eastern India. Journal of Urban Management 8 (3), 420–434.
  • Das, M., Das, A., 2020a. Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST) –A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India. Urban Climate 32, 100591. https://doi. org/10.1016/j.uclim.2020.100591.
  • Das, M., Das, A., Mandal, S., 2020b. Outdoor thermal comfort in different settings of a tropical planning region of Eastern India by adopting LCZs approach: a case study on Sriniketan-Santiniketan Planning Area (SSPA). Sustainable Cities and Society 102433. https://doi.org/10.1016/j.scs.2020.102433
  • Dash, P., Gottsche, F. -M., Olesen, F. -S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice—current trends. International Journal of Remote Sensing, 23(13), 2563−2594.
  • Dickinson, R.E., 1994. Satellite systems and models for future climate change. In: Henderson-Sellers, A. (Ed.), Future Climates of the World: A Modelling Perspective.Elsevier, pp. 27 16, World Survey of Climatology.
  • Diem, J. E., Stauber, C. E., & Rothenberg, R. (2017). Heat in the southeastern United States: Characteristics, trends, and potential health impact. PLoS ONE, 12(5), 1–19. https://doi.org/10.1371/journal.pone.0177937
  • Dong,W., Liu, Z., Zhang, L., Tang, Q., Liao, H., Li, X., 2014. Assessing heat health risk for sustainability in Beijing’s urban heat island. Sustainability 6, 7334–7357.
  • Du, H., Zhou, F., Li, C., Cai,W., Jiang, H., Cai, Y., 2020. Analysis of the impact of land use on spatiotemporal patterns of surface urban heat island in rapid urbanization, a case study of Shanghai, China. Sustainability 12, 1171.
  • Dutta, I., Das, A., 2020. Exploring the Spatio-temporal pattern of regional heat island (RHI) in an urban agglomeration of secondary cities in Eastern India. Urban Climate 34, 100679. https://doi.org/10.1016/j.uclim.2020.100679.
  • Estoque, R.C., Murayama, Y., Myint, S.W., 2017. Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 577, 349–359.
  • Fonseka, H.P.U., Zhang, H., Sun, Y., Su, H., Lin, H., Lin, Y., 2019. Urbanization and its impacts on land surface temperature in Colombo metropolitan area, Sri Lanka, from 1988 to 2016. Rem. Sens. 11 (8), 957.
  • Guo, Z., Wang, S.D., Cheng, M.M., Shu, Y., 2012. Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images. Procedia Environmental Sciences 13, 935–942.
  • Hajat, S., Kovats, R.S., Lachowycz, K., 2007. Heat-related and cold-related deaths in England and Wales: who is at risk? Occup. Environ. Med. 64 (2), 93–100. https:// doi.org/10.1136/oem.2006.029017
  • Heaviside, C., Vardoulakis, S., & Cai, X. M. (2016). Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environmental Health: A Global Access Science Source, 15(Suppl 1). https://doi.org/10.1186/s12940-016- 0100-9.
  • Hirano, Y., & Fujita, T. (2012). Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy, 37(1), 371–383. https://doi.org/10.1016/j.energy.2011.11.018
  • Janssen, N.A.H., Gerlofs-Nijland, M.E., Lanki, T., Salonen, R.O., Cassee, F., Hoek, G., et al., 2012. Health Effects of Black Carbon, the WHO European Centre for Environment and Health. World Health Organisation Regional Office for Europe, Copenhagen, Denmark. Bonn, Germany
  • Jiang, Y., Fu, P., Weng, Q., 2015. Assessing the impacts of urbanization-associated land use/cover change on land surface temperature and surface moisture: a case study in the midwestern United States. Rem. Sens. 7 (4), 4880–4898.
  • Kunst, A.E., Looman, C.W., Mackenbach, J.P., 1993. Outdoor air temperature and mortality in The Netherlands: a time-series analysis. Am. J. Epidemiol. 137 (3), 331–341. https://doi.org/10.1093/oxfordjournals.aje.a116680
  • Kysely, J., Huth, R., 2004. Heat-related mortality in the Czech Republic examined through synoptic and traditional1 approaches. Clim. Res. 25 (3), 265–274. https:// doi.org/10.3354/cr025265.
  • Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., ... Sobrino, J.A., 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment 131, 14–37.
  • Li, G., Zhang, F., Jing, Y., Liu, Y., Sun, G., 2017. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci. Total Environ. 596, 256–265.
  • Lu, D., Mausel, P., Brondizio, E., Moran, E., 2002. Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. Int. J. Remote Sens. 23 (13), 2651–2671.
  • Macintyre, H. L., Heaviside, C., Cai, X., & Phalkey, R. (2021). The winter urban heat island: Impacts on cold-related mortality in a highly urbanized European region for present and future climate. Environment International, 154, Article 106530. https:// doi.org/10.1016/j.envint.2021.106530
  • Mallick, J., Rahman, A., Singh, C.K., 2013. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 52 (4), 639–655. https://doi.org/10.1016/j.asr.2013.04.025.
  • Massey, D.D., Habil, M., Taneja, A., 2016. Particles in different indoor microenvironments-its implications on occupants. Build. Environ. 106, 237–244. https://doi.org/10.1016/j.buildenv.2016.06.036
  • Mathew, A., Sreekumar, S., Khandelwal, S., Kaul, N., Kumar, R., 2016. Prediction of surface temperatures for the assessment of urban heat island effect over Ahmedabad city using linear time series model. Energy Build. 128, 605–616. https://doi.org/ 10.1016/j.enbuild.2016.07.004.
  • Melaas, E.K., Wang, J.A., Miller, D.L., Friedl, M.A., 2016. Interactions between urban vegetation and surface urban heat islands: a case study in the Bostonmetropolitan region. Environ. Res. Lett. 11, 054020.
  • Meteoblue.com, 2021. Adana iklim verileri (Erişim tarihi: 16 Kasım 2021)
  • Oke, T.R., 1973. City size and the urban heat island. Atmos. Environ. 7 (8), 769–779. https://doi.org/10.1016/0004-6981(73)90140-6, 1967.
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/ qj.49710845502
  • Pantavou, K., Lykoudis, S., Psiloglou, B., 2017. Air quality perception of pedestrians in an urban outdoor Mediterranean environment: a field survey approach. Sci. Total Environ. 574, 663–670. https://doi.org/10.1016/j.scitotenv.2016.09.090
  • Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438(7066), 310–317. https://doi.org/ 10.1038/nature04188
  • Ramamurthy, P., Sangobanwo, M., 2016. Inter-annual variability in urban heat island intensity over 10 major cities in the United States. Sustain. Cities Soc. 26, 65–75.
  • Rasul,A., Balzter, H., Smith,C., Remedios, J., Adamu, B., Sobrino, J., Srivanit, M., Weng, Q. (2017). A review on remote sensing of urban heat and cool islands, Land 6 38, https://doi.org/10.3390/land6020038
  • Santamouris, M., Cartalis, C., Synnefa, A., 2015. Local urban warming, possible impacts and a resilience plan to climate change for the historical center of Athens, Greece. Sustainable Cities and Society 19, 281–291. https://doi.org/10.1016/j. scs.2015.02.001
  • Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island - A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224–240. https://doi.org/10.1016/j.rser.2013.05.047.
  • Santamouris, M. (2014) On the energy impact of urban heat island and global warming on buildings, Energy Build. 82,100–113, https://doi.org/10.1016/j. enbuild.2014.07.022.
  • Sarrat, C., Lemonsu, A., Masson, V., Guedalia, D., 2006. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 40, 1743–1758
  • Stathopoulou, E., Mihalakakou, G., Santamouris, M., & Bagiorgas, H. S. (2008). On the impact of temperature on tropospheric Ozone concentration levels in urban environments. Journal of Earth System Science, 117(3), 227–236. https://doi.org/ 10.1007/s12040-008-0027-9
  • Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/ 10.1175/BAMS-D-11-00019.1
  • Sun, Y., & Augenbroe, G. (2014). Urban heat island effect on energy application studies of office buildings. Energy and Buildings, 77, 171–179. https://doi.org/10.1016/j. enbuild.2014.03.055
  • Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F., & Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84. https://doi.org/10.1007/s00484-009-0256-x
  • Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A.J., Li, F., Chen, H., 2010. The urban heat island and its impact on heatwaves and human health in Shanghai. Int. J. Biometeorol. 54, 75–84.
  • Tayyebi, A., Shafizadeh-Moghadam, H., Tayyebi, A.H., 2018. Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. Land Use Pol. 71, 459–469.
  • Urban Atlas, 2018. Urban Atlas Database. Copernicus Copernicus Land Monitoring Service.
  • Unal Cilek, M., Cilek, A., 2021. Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing
  • Landsat-8 and ENVI-met model data. Sustain. Cities Soc. 69, 102877. https://doi.org/10.1016/j.scs.2021.102877
  • Ünal, M., Uslu, C. (2018) Evaluating and optimizing urban green spaces for compact urban areas: Cukurova District in Adana, Turkey. ISPRS International Journal of Geo-Information 7:70.
  • Vandentorren, S., Bretin, P., Zeghnoun, A., Mandereau Bruno, L., Croisier, A., Cochet, C., Riberon, J., Siberan, I., Declercq, B., Ledrans, M., 2006. August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur. J. Pub. Health 16, 583–591
  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384.
  • Wan, Z., & Li, Z. L. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperature from eos/modis data. IEEE Transactions on Geoscience and Remote Sensing : A Publication of the IEEE Geoscience and Remote Sensing Society, 35(4), 980–996.
  • Wang, W., Yao, X., & Shu, J. (2020). Air advection induced differences between canopy and surface heat islands. Science of the Total Environment, 725, Article 138120. https://doi.org/10.1016/j.scitotenv.2020.138120
  • Wemegah, C. (2020). Systematic assessment of Urban Heat Island (UHI) warming in systematic assessment of Urban Heat Island (UHI) warming in greater Accra region. [place unknown]. Ghana: Kwame Nkrumah University of Science and Technology.
  • Weng, Q., Rajasekar, U., & Hu, X. (2011). Modeling Urban Heat Islands and Their Relationship With Impervious Surface and Vegetation Abundance by Using ASTER Images. IEEE Transactions on Geoscience and Remote Sensing : A Publication of the IEEE Geoscience and Remote Sensing Society, 49(2), 4080–4089.
  • Yang, J., Sun, J., Ge, Q., Li, X., 2017. Assessing the impacts of urbanization-associated green space on urban land surface temperature: a case study of Dalian, China. Urban For. Urban Green. 22, 1–10.
  • Yu, X., Guo, X., Wu, Z., 2014. Land surface temperature retrieval from Landsat 8 TIRS—comparison between radiative transfer equation-based method, split window algorithm and single channel method. Rem. Sens. 6 (10), 9829–9852. https://doi. org/10.3390/rs6109829
  • Zhou,W., Pickett, S.T.A., Cadenasso,M.L., 2016. Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Land. Ecol. 32, 15–30
  • Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. A. (2019). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1), 1–36. https:// doi.org/10.3390/rs11010048.
  • Zhou, W., Pickett, S.T.A., McPhearson, T., 2021. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustainability, 1.
  • Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54–63. https://doi.org/10.1016/ j.landurbplan.2011.03.009
  • Zipper, S. C., Schatz, J., Singh, A., Kucharik, C. J., Townsend, P. A., & Loheide, S. P. (2016). Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environmental Research Letters, 11(5). https://doi.org/ 10.1088/1748-9326/11/5/054023.