Karbazol Temelli (D–π–A) Duyarlaştırıcı: Sentezi, Karakterizasyonu ve DSSC Uygulaması

Bu çalışmada, elektron donörü olarak karbazol çekirdeği, π-konjuge köprü olarak fenil birimleri ve elektron alıcısı olarak flor gruplarını içeren yeni bir organik karbazol bazlı donör-π-alıcı (D–π–A) duyarlaştırıcı bileşik C3 sentezlenmiş olup, ZnO bazlı boya duyarlı güneş pillerinde (DSSC'ler) boya olarak kullanılmıştır. 3,6-di(2,4-diflorofenil)-N-oktil karbazol (C3), ilk olarak halojenasyon ve alkilasyon reaksiyonu ve ikinci olarak Suzuki-Miyaura çapraz kenetlenme reaksiyonu ile iyi verimlerle sentezlenmiştir. Sentezlenen C3 duyarlaştırıcı, IR, 1H NMR ve 13C NMR ile karakterize edilmiştir. Ayrıca bu bileşiğin optik (UV-Vis ve floresans) ve termogravimetrik özellikleri de incelenmiştir. Hidrotermal yöntemlerle sentezlenen ZnO nanotozlarının kristal yapısı X-ışını kırınım spektrokopi (XRD) yöntemiyle incelendi ve hekzagonal wurtzite yapıya sahip oldukları belirlendi. Taramalı electron mikrokobu (SEM) görüntüleri ZnO nanotozlarının oldukça yoğun ve düngün yapraksı bir yapıya sahip olduklarını göstermiştir. C3 ve N719 kullanılarak ZnO tabanlı DSSC cihazlarının fabrikasyonu yapılmıştır. Metal içermeyen organik (C3), rutenyum (N719) ve karışım duyarlaştırıcılarının (C3-N719) güç dönüşüm verimleri (PCE) ve açık devre fotovoltajları (Voc) sırasıyla %0,006-0,28, %0.461-0.44 ve %0.893-0.53 olarak ölçülmüştür. N719 bazlı DSSC'lerin C3 ile artan verimi nedeniyle, C3'ün boya kümeleşmesini azalttığı ve böylece yardımcı duyarlaştırıcı olarak kullanılabileceği belirlenmiştir.

Carbazole Based (D–π–A) Sensitizer: Synthesis, Characterization and its DSSC Application

Bu çalışmada, elektron donörü olarak karbazol çekirdeği, π-konjuge köprü olarak fenil birimleri ve elektron alıcısı olarak flor gruplarını içeren yeni bir organik karbazol bazlı donör-π-alıcı (D–π–A) duyarlaştırıcı bileşik C3 sentezlenmiş olup, ZnO bazlı boya duyarlı güneş pillerinde (DSSC'ler) boya olarak kullanılmıştır. 3,6-di(2,4-diflorofenil)-N-oktil karbazol (C3), ilk olarak halojenasyon ve alkilasyon reaksiyonu ve ikinci olarak Suzuki-Miyaura çapraz kenetlenme reaksiyonu ile iyi verimlerle sentezlenmiştir. Sentezlenen C3 duyarlaştırıcı, IR, 1H NMR ve 13C NMR ile karakterize edilmiştir. Ayrıca bu bileşiğin optik (UV-Vis ve floresans) ve termogravimetrik özellikleri de incelenmiştir. Hidrotermal yöntemlerle sentezlenen ZnO nanotozlarının kristal yapısı X-ışını kırınım spektrokopi (XRD) yöntemiyle incelendi ve hekzagonal wurtzite yapıya sahip oldukları belirlendi. Taramalı electron mikrokobu (SEM) görüntüleri ZnO nanotozlarının oldukça yoğun ve düngün yapraksı bir yapıya sahip olduklarını göstermiştir. C3 ve N719 kullanılarak ZnO tabanlı DSSC cihazlarının fabrikasyonu yapılmıştır. Metal içermeyen organik (C3), rutenyum (N719) ve karışım duyarlaştırıcılarının (C3-N719) güç dönüşüm verimleri (PCE) ve açık devre fotovoltajları (Voc) sırasıyla %0,006-0,28, %0.461-0.44 ve %0.893-0.53 olarak ölçülmüştür. N719 bazlı DSSC'lerin C3 ile artan verimi nedeniyle, C3'ün boya kümeleşmesini azalttığı ve böylece yardımcı duyarlaştırıcı olarak kullanılabileceği belirlenmiştir.

___

  • Anta, J. A., Guillén, E., Tena-Zaera, R. (2012). ZnO-based dye-sensitized solar cells, The Journal of Physical Chemistry C, 116, 11413-11425.
  • Ashraf, S., Su, R., Akhtar, J., Siddiqi, H. M., Shuja, A., El-Shafei, A. (2020). Effect of fluoro-substituted acceptor-based ancillary ligands on the photocurrent and photovoltage in dye-sensitized solar cells, Solar Energy, 199, 74-81.
  • Barea, E. M., Zafer, C., Gultekin, B., Aydin, B., Koyuncu, S., Icli, S., Santiago, F. F., Bisquert, J. (2010). Quantification of the effects of recombination and injection in the performance of dye-sensitized solar cells based on N-substituted carbazole dyes, The Journal of Physical Chemistry C, 114, 19840-19848.
  • Chen, D.-Y., Hsu, Y.-Y., Hsu, H.-C., Chen, B.-S., Lee, Y.-T., Fu, H., Chung, M.-W., Liu, S.-H., Chen, H.-C., Chi, Y. (2010). Organic dyes with remarkably high absorptivity; all-solid-state dye-sensitized solar cell and role of fluorine substitution, Chemical Communications, 46, 5256-5258.
  • Cho, N., Han, J., Song, K., Kang, M.-S., Jun, M.-J., Kang, Y., Ko, J. (2014). Substituent effect of fluorine atom on benzothiadiazole bridging unit in dye-sensitized solar cells, Tetrahedron, 70, 427-433.
  • Chou, T. P., Zhang, Q., Cao, G. (2007). Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells, The Journal of Physical Chemistry C, 111, 18804-18811.
  • Cias, P., Slugovc, C., Gescheidt, G. (2011). Hole transport in triphenylamine based OLED devices: from theoretical modeling to properties prediction, The Journal of Physical Chemistry A, 115, 14519-14525.
  • Cui, Y., Wu, Y., Lu, X., Zhang, X., Zhou, G., Miapeh, F. B., Zhu, W., Wang, Z.-S. (2011). Incorporating benzotriazole moiety to construct D–A−π–A organic sensitizers for solar cells: significant enhancement of open-circuit photovoltage with a long alkyl group, Chemistry of Materials, 23, 4394-4401.
  • Derince, B., Gorgun, K., Caglar, Y., Caglar, M. (2022). The architectural design of new conjugated systems carrying donor- π-acceptor groups (carbazole-CF3): Characterizations, optical, photophysical properties and DSSC’s applications, Journal of Molecular Structure, 1250, 131689-131700.
  • Dierschke, F., Grimsdale, A. C., Muellen, K. (2003). Efficient synthesis of 2,7-dibromocarbazoles as components for electroactive materials, Synthesis, 2003, 2470-2472.
  • Ehret, A., Stuhl, L., Spitler, M., Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes, (2001). The Journal of Physical Chemistry B, 105, 9960-9965.
  • Fischer, M. K., Wenger, S., Wang, M., Mishra, A., Zakeeruddin, S. M., Gratzel, M., Bäuerle, P. (2010). D-π-A sensitizers for dye-sensitized solar cells: linear vs branched oligothiophenes, Chemistry of Materials, 22, 1836-1845.
  • Fonash, S. (2012) Solar cell device physics, Elsevier.
  • Fukai, Y., Kondo, Y., Mori, S., Suzuki, E. (2007). Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length, Electrochemistry Communications, 9, 1439-1443. Giribabu, L., Kanaparthi, R. K., Velkannan, V. (2012). Molecular engineering of sensitizers for dye‐sensitized solar cell applications, The Chemical Record, 12, 306-328.
  • Gonçalves, L. M., de Zea Bermudez, V., Ribeiro, H. A., Mendes, A. M. (2008). Dye-sensitized solar cells: A safe bet for the future, Energy & Environmental Science, 1, 655-667.
  • Grätzel, M. (2001). Photoelectrochemical cells, Nature, 414, 338-344.
  • Grätzel, M. (2009). Recent advances in sensitized mesoscopic solar cells, Accounts of Chemical Research, 42, 1788-1798.
  • Gupta, V. D., Padalkar, V. S., Phatangare, K. R., Patil, V. S., Umape, P. G., Sekar, N. (2011). The synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole, Dyes and Pigments, 88, 378-384.
  • Günes, S., Sariciftci, N. S. (2008). Hybrid solar cells, Inorganica Chimica Acta, 361, 581-588.
  • Han, J., Thirupathaiah, B., Kwon, G., Kim, C. (2015). Seo, S., Synthesis and characterization of carbazole-and α-carboline-based thiophene derivatives as organic semiconductors for organic thin-film transistors, Dyes and Pigments, 114, 78-84.
  • Hara, K., Sayama, K., Ohga, Y., Shinpo, A., Suga, S., Arakawa, H. (2001). A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chemical Communications, 6, 569-570.
  • Heredia, D., Natera, J., Gervaldo, M., Otero, L., Fungo, F., Lin, C.-Y., Wong, K.-T. (2010). Spirobifluorene-bridged donor/acceptor dye for organic dye-sensitized solar cells, Organic Letters, 12, 12-15.
  • Hirade, M., Yasuda, T., Adachi, C. (2013). Effects of intramolecular donor–acceptor interactions on bimolecular recombination in small-molecule organic photovoltaic cells, The Journal of Physical Chemistry C, 117, 4986-4991.
  • Hua, Y., Chang, S., Wang, H., Huang, D., Zhao, J., Chen, T., Wong, W.-Y., Wong, W.-K., Zhu, X. (2013). New phenothiazine-based dyes for efficient dye-sensitized solar cells: Positioning effect of a donor group on the cell performance, Journal of Power Sources, 243, 253-259.
  • Huang, J., Su, J.-H., Li, X., Lam, M.-K., Fung, K.-M., Fan, H.-H., Cheah, K.-W., Chen, C. H., Tian, H. (2011). Bipolar anthracene derivatives containing hole-and electron-transporting moieties for highly efficient blue electroluminescence devices, Journal of Materials Chemistry, 21, 2957-2964.
  • Huang, W.-K., Wu, H.-P., Lin, P.-L., Diau, E. W.-G. (2013). Design and characterization of heteroleptic ruthenium complexes containing benzimidazole ligands for dye-sensitized solar cells: the effect of thiophene and alkyl substituents on photovoltaic performance, The Journal of Physical Chemistry C, 117, 2059-2065.
  • Kadam, M. M., Patil, D., Sekar, N. (2018). Carbazole based NLOphoric styryl dyes-synthesis and study of photophysical properties by solvatochromism and viscosity sensitivity, Journal of Luminescence, 202, 212-224.
  • Kang, S. H., Kim, J.-Y., Kim, Y., Kim, H. S., Sung, Y.-E. (2007). Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells, The Journal of Physical Chemistry C, 111, 9614-9623.
  • Karon, K., Lapkowski, M. (2015). Carbazole electrochemistry: a short review, Journal of Solid State Electrochemistry, 19, 2601-2610.
  • Keis, K., Lindgren, J., Lindquist, S.-E., Hagfeldt, A. 2000. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes, Langmuir, 16, 4688-4694.
  • Kremser, G., Hofmann, O. T., Sax, S., Kappaun, S., List, E. J. W., Zojer, E., Slugovc, C. (2008). Synthesis and photophysical properties of 3,6-diphenyl-9-hexyl-9H-carbazole derivatives bearing electron withdrawing groups, Monatshefte für Chemie, 139, 223–231.
  • Kumar, G. S., Srinivas, K., Shanigaram, B., Bharath, D., Singh, S. P., Bhanuprakash, K., Rao, V. J., Islam, A., Han, L. 2014. Metal-free organic dyes containing thiadiazole unit for dye-sensitized solar cells: a combined experimental and theoretical study, RSC Advances, 4, 13172-13181.
  • Law, M., Greene, L. E., Radenovic, A., Kuykendall, T., Liphardt, J., Yang, P. (2006). ZnO−Al2O3 and ZnO−TiO2 core−shell nanowire dye-sensitized solar cells, The Journal of Physical Chemistry B, 110, 22652-22663.
  • Li, G., Jiang, K-J., Li, Y-F., Li, S-L., Yang, L-M. (2008). Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells, The Journal of Physical Chemistry C, 112, 11591-11599.
  • Li, L., Zhai, T., Bando, Y., Golberg, D. (2012) .Recent progress of one-dimensional ZnO nanostructured solar cells, Nano Energy, 1, 91-106.
  • Lin, S. L., Chan, L. H., Lee, R. H., Yen, M. Y., Kuo, W. J., Chen, C. T., Jeng, R. J. (2008). Highly efficient carbazole‐π‐dimesitylborane bipolar fluorophores for nondoped blue organic light‐emitting diodes, Advanced Materials, 20, 3947-3952.
  • Liu, B., Liu, Q., You, D., Li, X., Naruta, Y., Zhu, W. (2012). Molecular engineering of indoline based organic sensitizers for highly efficient dye-sensitized solar cells, Journal of Materials Chemistry, 22, 13348-13356.
  • Liu, X., Cao, Z., Huang, H., Liu, X., Tan, Y., Chen, H., Pei, Y., Tan, S. (2014). Novel D–D–π-A organic dyes based on triphenylamine and indole-derivatives for high performance dye-sensitized solar cells, Journal of Power Sources, 248, 400-406.
  • Lu, M., Zhu, Y., Ma, K., Cao, L., Wang, K. (2012). Facile synthesis and photo-physical properties of cyano-substituted styryl derivatives based on carbazole/phenothiazine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 95, 128-134.
  • Marotta, G., Reddy, M. A., Singh, S. P., Islam, A., Han, L., De Angelis, F., Pastore, M., Chandrasekharam, M. (2013). Novel carbazole-phenothiazine dyads for dye-sensitized solar cells: a combined experimental and theoretical study, ACS Applied Materials & Interfaces, 5, 9635-9647.
  • Memarian, N., Concina, I., Braga, A., Rozati, S. M., Vomiero, A., Sberveglieri, G. (2011). Hierarchically assembled ZnO nanocrystallites for high‐efficiency dye‐sensitized solar cells, Angewandte Chemie, 123, 12529-12533.
  • Mishra, A., Bäuerle, P. (2012). Small molecule organic semiconductors on the move: promises for future solar energy technology, Angewandte Chemie International Edition, 51, 2020-2067.
  • Miyaura, N. (2004). Metal‐catalyzed cross‐coupling reactions of organoboron compounds with organic halides, Metal‐Catalyzed Cross‐Coupling Reactions, 41-123.
  • Namuangruk, S., Fukuda, R., Ehara, M., Meeprasert, J., Khanasa, T., Morada, S., Kaewin, T., Jungsuttiwong, S., Sudyoadsuk, T., Promarak, V. (2012). D–D− π–A-Type organic dyes for dye-sensitized solar cells with a potential for direct electron injection and a high extinction coefficient: synthesis, characterization, and theoretical investigation, The Journal of Physical Chemistry C, 116, 25653-25663.
  • O'regan, B., Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737-740.
  • Paek, S., Cho, N., Song, K., Jun, M.-J., Lee, J. K., Ko, J. (2012). Efficient organic semiconductors containing fluorine-substituted benzothiadiazole for solution-processed small molecule organic solar cells, The Journal of Physical Chemistry C, 116, 23205-23213.
  • Patil, D., Jadhav, M., Avhad, K., Chowdhury, T. H., Islam, A., Bedja, I., Sekar, N. (2018). A new class of triphenylamine-based novel sensitizers for DSSCs: a comparative study of three different anchoring groups, New Journal of Chemistry, 42, 11555-11564.
  • Pushkara Rao, V., Jen, A.-Y., Caldwell, J. (1994). Rhodanine-methine as π-electron acceptor in second-order nonlinear optical chromophores, Tetrahedron Letters, 35, 3849-3852.
  • Quintana, M., Edvinsson, T., Hagfeldt, A., Boschloo, G. (2007). Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime, The Journal of Physical Chemistry C, 111, 1035-1041.
  • Roy, C., Bura, T., Beaupré, S., Légaré, M.-A., Sun, J.-P., Hill, I. G., Leclerc, M. (2017). Fluorinated thiophene-based synthons: polymerization of 1,4-dialkoxybenzene and fluorinated dithieno-2,1,3-benzothiadiazole by direct heteroarylation, Macromolecules, 50, 4658-4667.
  • Sathiyan, G., Sivakumar, E. (2016). Ganesamoorthy, R., Thangamuthu, R., Sakthivel, P., Review of carbazole based conjugated molecules for highly efficient organic solar cell application, Tetrahedron Letters, 57, 243-252.
  • Sayama, K., Sugihara, H. Arakawa, H., (1998). Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye, Chemistry of Materials, 10, 3825-3832.
  • Shen, P., Tang, Y., Jiang, S., Chen, H., Zheng, X., Wang, X., Zhao, B., Tan, S. (2011). Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene moieties, Organic Electronics, 12, 125-135.
  • Siodła, T., Ozimiński, W. P., Hoffmann, M., Koroniak, H., Krygowski, T. M. (2014). Toward a physical interpretation of substituent effects: The case of fluorine and trifluoromethyl groups, The Journal of Organic Chemistry, 79, 7321−7331.
  • Srinivas, K., Yesudas, K., Bhanuprakash, K., Rao, V. J., Giribabu, L. (2009). A combined experimental and computational investigation of anthracene based sensitizers for DSSC: comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface, The Journal of Physical Chemistry C, 113, 20117-20126.
  • Su, S.-J., Cai, C., Kido, J. (2011). RGB phosphorescent organic light-emitting diodes by using host materials with heterocyclic cores: effect of nitrogen atom orientations, Chemistry of Materials, 23, 274-284.
  • Tan, H., Pan, C., Wang, G., Wu, Y., Zhang, Y., Zou, Y., Yu, G., Zhang, M. (2013). Phenoxazine-based organic dyes with different chromophores for dye-sensitized solar cells, Organic Electronics, 14, 2795-2801.
  • Thomas, K. R. J., Lin, J. T., Tao, Y.-T., Ko, C.-W. (2001). Light-emitting carbazole derivatives: potential electroluminescent materials, Journal of the American Chemical Society, 123, 9404-9411.
  • Tu, G., Massip, S., Oberhumer, P. M., He, X., Friend, R. H., Greenham, N. C., Huck, W. T. (2010). Synthesis and characterization of low bandgap conjugated donor–acceptor polymers for polymer: PCBM solar cells, Journal of Materials Chemistry, 20, 9231-9238.
  • Van Mullekom, H., Vekemans, J., Havinga, E., Meijer, E. (2001). Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Materials Science and Engineering: R: Reports, 32, 1-40.
  • Vayssieres, L. (2003). Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Advanced Materials, 15, 464-466.
  • Wang, L., Shen, P., Cao, Z., Liu, X., Huang, Y., Liu, C., Chen, P., Zhao, B., Tan, S. (2014). Effects of the acceptors in triphenylamine-based D–A′–π–A dyes on photophysical, electrochemical, and photovoltaic properties, Journal of Power Sources, 246, 831-839.
  • Wang, Z., Qian, X.-f., Yin, J., Zhu, Z.-k. (2004). Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route, Langmuir, 20, 3441-3448.
  • Westermark, K., Rensmo, H., Siegbahn, H., Keis, K., Hagfeldt, A., Ojamäe, L., Persson, P. (2002). PES studies of Ru(dcbpyH2)2(NCS)2 adsorption on nanostructured ZnO for solar cell applications, The Journal of Physical Chemistry B, 106, 10102-10107.
  • Yang, L., Zheng, Z., Li, Y., Wu, W., Tian, H., Wang, Z. 2015. N-Annulated perylene-based metal-free organic sensitizers for dye-sensitized solar cells, Chemical Communications, 51, 4842-4845.
  • Yang, S., Liu, J., Zhou, P., Han, K., He, G. (2011). Photo-induced intramolecular charge transfer from antenna to anchor groups in phenoxazine dyes, Chemical Physics Letters, 512, 66-69.
  • Yu, Q.-Y., Huang, J.-F., Shen, Y., Xiao, L.-M., Liu, J.-M., Kuang, D.-B., Su, C.-Y., (2013). Novel phenanthroline-based ruthenium complexes for dye-sensitized solar cells: enhancement in performance through fluoro-substitution, RSC Advances, 3, 19311-19318.
  • Zassowski, P., Ledwon, P., Kurowska, A., Herman, A. P., Jarosz, T., Lapkowski, M., Cherpak, V., Stakhira, P., Peciulyte, L., Volyniuk, D. (2017). Efficient synthesis and structural effects of ambipolar carbazole derivatives, Synthetic Metals, 223, 1-11.
  • Zhang, Q., Cao, G. (2011). Nanostructured photoelectrodes for dye-sensitized solar cells, Nano Today, 6, 91-109.
  • Zhang, Q., Dandeneau, C. S., Candelaria, S., Liu, D., Garcia, B. B., Zhou, X., Jeong, Y.-H., Cao, G. (2010). Effects of lithium ions on dye-sensitized ZnO aggregate solar cells, Chemistry of Materials, 22, 2427-2433.
  • Referans72 Zhang, X., Chi, Z., Yang, Z., Chen, M., Xu, B., Zhou, L., Wang, C., Zhang, Y., Liu, S., Xu, J. (2009). Synthesis of carbazole derivatives with high quantum yield and high glass transition temperature, Optical Materials, 32, 94-98.
  • Zhang, Z.-B., Fujiki, M., Tang, H.-Z. (2002). Motonaga, M., Torimitsu, K., The first high molecular weight poly(N-alkyl-3,6-carbazole)s, Macromolecules, 35, 1988-1990.
  • Zheng, J., Zhan, C., Qin, J., Zhan, R. (2002). Synthesis and fluorescence of pyridine-N-alkyl carbazole copolymer prepared by oxidative-coupling reaction, Chemistry Letters, 31, 1222-1223.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç