Kafes Yapılarla Pekiştirilmiş Kompozit Plakanın Serbest Titreşim Analizi

Farklı kafes yapıları ile pekiştirilmiş tabakalı kompozit plakaların serbest titreşim davranışı incelenmiştir. Serbest titreşimi simüle etmek için, Ansys Parametric Design Language (APDL) ile sonlu eleman modelleri oluşturulmuştur. Modellerde tabakalı kompozit ve kafes yapıların modellenmesinde sırasıyla SHELL181 ve BEAM181 elemanları kullanılmıştır. Farklı pekiştirici kafes yapılarının kompozit plakanın doğal frekansları üzerindeki etkisi, ankastre-serbest-ankastre-serbest sınır koşulu için incelenmiştir. Sonuçlar, L2 tipi kafesten yapılan pekiştirilmiş kompozit yapıların frekans parametrelerinin diğer kafes tiplerinden oluşanlardan daha yüksek olduğunu göstermiştir. Bu çalışma, kafes yapılarının kompozit plakalar için pekiştirici yapıları olarak kullanımına ilişkin bilgimizi artırmak için ilgi çekici bir fırsat sunmaktadır.

Free Vibration Analysis of Composite Plate Stiffened by Lattice Structures

Free vibration behavior of laminated composite plates stiffened by different lattice structures is considered. To simulate free vibration, finite element models were created with Ansys Parametric Design Language (APDL). In the models, SHELL181 and BEAM181 elements were used to model laminated composite and lattice structures, respectively. The influence of the different stiffeners lattice structures on natural frequencies of the composite plate is examined for the clamped-free-clamped-free boundary condition. The results showed that the frequency parameters of the stiffened composite structures made of the L2-type lattice are higher than those composed of other lattice types. This study provides an exciting opportunity to advance our knowledge of the usage of lattice structures as stiffener structures for composite plates.

___

  • Haim Abramovich, Ed., Stability and Vibrations of Thin-Walled Composite Structures, Cambridge, United Kingdom: Woodhead Publishing, 2018.
  • T. I. Thinh and N. N. Khoa, “Free vibration analysis of stiffened laminated plates using a new stiffened element”, Technische Mechanik, vol. 28, pp. 227–236, Oct. 2008.
  • A. Cankurt, “Optimum design of composite stiffened panels with instability considerations,” M. Eng. thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, India, Sept. 2013.
  • S. Sahoo, Design Aids for Stiffened Composite Shells with Cutouts, Springer, Singapore, 2017.
  • S.S. Rao, Vibration of Continuous Systems, John Wiley & Sons, Inc. Hoboken, New Jersey,2007.
  • A. Bhar, S.S. Phoenix, S.K. Satsangi, “Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective”, Composite Structures, vol. 92, pp. 312–321, Aug. 2010.
  • L. Huang, A. H. Sheikh, C.T. Ng, M.C. Griffith, “An efficient finite element model for buckling analysis of grid stiffened laminated composite plates”, Composite Structures, vol. 122, pp. 41–50, Nov. 2015.
  • E. Damnjanović, M. Nefovska-Danilović, M. Petronijević, M. Marjanović, “Application of the dynamic stiffness method in the vibration analysis of stiffened composite plates”, Procedia Engineering, vol. 199, pp. 224–229, Sept. 2017.
  • E. Damnjanović, M. Marjanović,M. Nefovska-Danilović, “Free vibration analysis of stiffened and cracked laminated composite plate assemblies using shear-deformable dynamic stiffness elements”, Computer Structures, vol. 180, pp. 723–740, Nov. 2017.
  • S. Zhang, L. Xu, “Exact static analysis of eccentrically stiffened plates with partial composite action”, Composite Structures, vol. 198, pp.117–125, May 2018.
  • A. S. Rajawat, A. K. Sharma, P. Gehlot, “Free vibration analysis of Stiffened Laminated Plate using FEM”, Materials Today: Proceedings, vol. 5, pp.5313–5321, Mar. 2018.
  • J. Geng, X. Zhang, C. Wang, Y. He, X. Chen, “Predicting dynamic response of stiffened-plate composite structures in a wide-frequency domain based on Composite B-spline Wavelet Elements Method (CBWEM)”, International Journal of Mechanical Sciences, vol. 144, pp.708–722, Jun. 2018.
  • D. Balkan, Ö. Demir, A. Arıkoğlu, “Dynamic analysis of a stiffened composite plate under blast load: A new model and experimental validation”, International Journal of Impact Engineering, vol. 143, pp. 103591, Sept. 2020.
  • L. Sinha, S.S. Mishra, A.N. Nayak, S.K. Sahu, “Free vibration characteristics of laminated composite stiffened plates: Experimental and numerical investigation, Composite Structures, vol. 233, pp.111557, Oct. 2020.
  • M. Zarei, G.H. Rahimi, M. Hemmatnezhad, “Free vibrational characteristics of grid-stiffened truncated composite conical shells”, Aerospace Science and Technology, vol. 99, pp.105717, Jan. 2020.
  • J. Chen, Y. Zhong, Q. Luo, Z. Shi, “Static and dynamic analysis of Isogrid Stiffened Composite Plates (ISCP) using equivalent model based on variational asymptotic method”, Thin-Walled Structures, vol. 163, pp.107671, June 2021.
  • Y. Wang, P. Qiao, "Improved buckling analysis of stiffened laminated composite plates by spline finite strip method", Composite Structures, vol. 255, pp.112936, January 2021.
  • Y. Wang, P. Qiao, “Postbuckling analysis of orthogonally-stiffened plates by a simplified spline finite strip method”, Thin-Walled Structures, Vol. 166, pp.108122, September 2021.
  • X. Liu, Y. Li, Y. Lin, J.R. Banerjee, “Spectral dynamic stiffness theory for free vibration analysis of plate structures stiffened by beams with arbitrary cross-sections”, Thin-Walled Structures, vol. 160, pp. 107391, March 2021.
  • P. S. Lee and G. McClure, “Elastoplastic large deformation analysis of a lattice steel tower structure and comparison with full-scale tests”, Journal of Constructional Steel Research, vol. 63, pp. 709–717, 2007.
  • M. C. Messner, M. I. Barham, M. Kumar and N. R. Barton, “Wave propagation in equivalent continuums representing truss lattice materials”, International Journal of Solids and Structures, vol.73–74, pp. 55–66, 2015.
  • R. Guo, R. Liu, W. Jiang, K. Chen, J. Zhang, F. Huang and X. Sun, “Numerical Analysis on Static Mechanical Properties of the Periodic Multilayer Lattice Material,” Engineering, vol. 3 (12), pp. 1149–1154, 2011.
  • J. Sun, Y. Yang and D. Wang, “Mechanical properties of regular hexahedral lattice structure formed by selective laser melting”, Laser Physics, vol. 23, 066101 (9pp), 2013.
  • C. Pan, Y. Han, J. Lu, “Design and Optimization of Lattice Structures: A Review”, Applied Sciences, vol.10(18),p. 6374, Sept. 2020.
  • L. Azzouz, Y. Chen, M. Zarrelli, J. M. Pearce, L. Mitchell, G. Ren, M. Grasso, “Mechanical properties of 3-D printed truss-like lattice biopolymer non-stochastic structures for sandwich panels with natural fibre composite skins”, Composite Structures, vol. 213, pp.220-230, Jan. 2019.
  • Y. Yang, M. Shan, L. Zhao, D. Qi, J. Zhang, “Multiple strut-deformation patterns based analytical elastic modulus of sandwich BCC lattices”, Materials & Design, vol. 181, pp. 107916, 2019.
  • J.S. Yang, Z.D. Liu, R. Schmidt, K.U. Schröder, L. Ma, L. Z. Wu, “Vibration-based damage diagnosis of composite sandwich panels with bi-directional corrugated lattice cores”, Composites Part A: Applied Science and Manufacturing, vol. 131, pp. 105781, Jan. 2020.
  • X. An, C. Lai, W. He, H. Fan, “Three-dimensional meta-truss lattice composite structures with vibration isolation performance”, Extreme Mechanics Letters, vol. 33, pp. 100577, Sept. 2019.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç