Geleneksel Fermente Sucuklardan İzole Edilen Laktik Asit Bakterilerindeki Postbiyotik ve Paraprobiyotiklerin Antioksidan Etkilerinin Değerlendirilmesi

Probiyotik biyoteknolojisi alanındaki son çalışmalar, bazı cansız mikroorganizmaların veya ürettikleri metabolitlerin en az probiyotik bakteriler kadar değerli biyolojik aktivitelere sahip olduğunu göstermiştir. Paraprobiyotikler, yeterli miktarlarda uygulandığında insan veya hayvana fayda sağlayan canlı olmayan mikrobiyal hücreler olarak tanımlanmaktadır. Canlı probiyotik mikroorganizmalar tarafından üretilen ve konakçıya bazı fizyolojik faydalar sağlayan biyoaktif çözünür metabolik yan ürünlere ise postbiyotikler denilmektedir. Canlı probiyotik bakteriler, birçok hastalığa neden olan oksidatif strese karşı antioksidan savunma sistemini güçlendirmek için uzun yıllardır kullanılmaktadır. Bu çalışlmada on iki farklı el yapımı fermente sucuk örneğinden izole edilen laktik asit bakterilerindeki postbiyotiklerin ve paraprobiyotiklerin antioksidan aktivitesi DPPH radikal süpürücü etki yöntemi kullanılarak değerlendirilmiştir. Çalışmada kullanılan postbiyotiklerin serbest radikal süpürücü etkisinin %5,65 ile %76,04 arasında, paraprobiyotiklerin etkisinin ise %5,90 ile %18,07 arasında değiştiği belirlenmiştir. Elde edilen bulgulara göre, postbiyotiklerin ve paraprobiyotiklerin antioksidan kapasitesinin suşa bağımlı olduğu ve postbiyotiklerin paraprobiyotiklere göre daha yüksek antioksidan aktiviteye sahip olduğu tespit edilmiştir.

Evaluation of the Antioxidant Effects of Postbiotics and Paraprobiotics in Lactic Acid Bacteria Isolated from Traditional Fermented Sausages

Recent studies in the field of probiotic biotechnology have shown that some non-living microorganisms or the metabolites they produce have at least as valuable biological activities as probiotic bacteria. Paraprobiotics are described as non-viable microbial cells that confer a benefit to the human or animal when administered in adequate amounts. Bioactive soluble metabolic byproducts produced by live probiotic microorganisms that impart some physiological benefit to the host are referred to as postbiotics. Live probiotic bacteria have been used for many years to strengthen the antioxidant defense system against oxidative stress that causes many diseases. The antioxidant activity of postbiotics and paraprobiotics in lactic acid bacteria isolated from twelve different hand-made fermented sausages was assessed using the DPPH radical scavenging assay in this research. It was determined that the free radical scavenging effect of postbiotics used in the study was between 5.65% and 76.04%, and the effect of paraprobiotics varied between 5.90% and 18.07%. According to the findings, antioxidant capacity of the postbiotics and paraprobiotics are strain-dependent and the postbiotics have higher antioxidant activity than the paraprobiotics.

___

  • Granato, D., Barba, F. J., Bursać Kovačević, D., Lorenzo, J. M., Cruz, A. G., & Putnik, P. (2020). Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 11, 93-118.
  • Food and Agricultural Organization of the United Nations and World Health Organization. (2021). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization [Online]. Available: http://who.int/foodsafety/fs_management/en/ probiotic_guidelines.pdf. 2002.
  • Trush, E. A., Poluektova, E. A., Beniashvilli, A. G., Shifrin, O. S., Poluektov, Y. M., & Ivashkin, V. T. (2020). The evolution of human probiotics: challenges and prospects. Probiotics and Antimicrobial Proteins, 12(4), 1291-1299.
  • Ojha, K. S., Kerry, J. P., Duffy, G., Beresford, T., & Tiwari, B. K. (2015). Technological advances for enhancing quality and safety of fermented meat products. Trends in Food Science & Technology, 44(1), 105-116.
  • Quinto, E. J., Jiménez, P., Caro, I., Tejero, J., Mateo, J., & Girbés, T. (2014). Probiotic lactic acid bacteria: a review. Food and Nutrition Sciences, 5(18), 1765.
  • Barros, C. P., Guimarães, J. T., Esmerino, E. A., Duarte, M. C. K., Silva, M. C., Silva, R., ... & Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1-8.
  • Cuevas-González, P. F., Liceaga, A. M., & Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research International, 109502.
  • Pieniz, S., Andreazza, R., Anghinoni, T., Camargo, F., & Brandelli, A. (2014). Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control, 37, 251-256.
  • Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., & Morelli, I. (2001). Antioxidant principles from bauhinia t arapotensis. Journal of Natural Products, 64(7), 892-895.
  • Schogor, A. L. B., Palin, M. F., dos Santos, G. T., Benchaar, C., Lacasse, P., & Petit, H. V. (2013). Mammary gene expression and activity of antioxidant enzymes and oxidative indicators in the blood, milk, mammary tissue and ruminal fluid of dairy cows fed flax meal. British Journal of Nutrition, 110(10), 1743-1750.
  • Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 47(4), 1460-1466.
  • Afify, A. E. M. M., Romeilah, R. M., Sultan, S. I., & Hussein, M. M. (2012). Antioxidant activity and biological evaluations of probiotic bacteria strains. International Journal of Academic Research, 4(6).
  • Amaretti, A., Di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M., & Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied Microbiology and Biotechnology, 97(2), 809-817.
  • Zhang, S., Liu, L., Su, Y., Li, H., Sun, Q., Liang, X., & Lv, J. (2011). Antioxidative activity of lactic acid bacteria in yogurt. African Journal of Microbiology Research, 5(29), 5194-5201.
  • Ou, C., Ko, J., & Lin, M. (2006). Antioxidative effects of intracellular extracts of yogurt bacteria on lipid peroxidation and intestine 407 cells. Journal of Food and Drug analysis, 14(3), 304-310.
  • Chang, H. M., Foo, H. L., Loh, T. C., Lim, E. T. C., & Mutalib, N. E. A. (2020). Comparative Studies of Inhibitory and Antioxidant Activities, and Organic Acids Compositions of Postbiotics Produced by Probiotic Lactiplantibacillus plantarum Strains Isolated From Malaysian Foods. Frontiers in Veterinary Science, 7.
  • Martorell, P., Alvarez, B., Llopis, S., Navarro, V., Ortiz, P., Gonzalez, N., ... & Tortajada, M. (2021). Heat-Treated Bifidobacterium longum CECT-7347: A Whole-Cell Postbiotic with Antioxidant, Anti-Inflammatory, and Gut-Barrier Protection Properties. Antioxidants, 10(4), 536.
  • Jang, H. J., Song, M. W., Lee, N. K., & Paik, H. D. (2018). Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. Journal of Food Science and Technology, 55(8), 3174-3180.
  • Hsieh, F. C., Lan, C. C. E., Huang, T. Y., Chen, K. W., Chai, C. Y., Chen, W. T., ... & Wu, C. S. (2016). Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food & Function, 7(5), 2374-2388.
  • Thakur, B. K., Saha, P., Banik, G., Saha, D. R., Grover, S., Batish, V. K., & Das, S. (2016). Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response. International İmmunopharmacology, 36, 39-50.
  • Piqué, N., Berlanga, M., & Miñana-Galbis, D. (2019). Health benefits of heat-killed (Tyndallized) probiotics: An overview. International Journal of Molecular Sciences, 20(10), 2534.
  • Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 1-22.