Görünür Işık Haberleşmesi için Çift Dördün Uzaysal Yoğunluk Modülasyonu

Bu çalışmada, çift dördün uzaysal modülasyon (ÇDUM) adı verilen izgesel verimi yüksek yeni bir uzaysal modülasyon tekniği çoklugiriş çoklu-çıkış (ÇGÇÇ) görünür ışık haberleşmesi (GIH) sistemleri için önerilmiştir. Sayısal modülasyon planı olarak, eş evreli (I) ve dördün (Q) sinyallerin yoğunluk modülasyonlu direk sezim (YM/DS) sistemlerde kullanımına olanak sağlayan, alt-taşıyıcılı yoğunluk modülasyonu (AYM) kullanılmıştır. Radyo frekans (RF) haberleşmesinde dördün uzamsal modülasyon (DUM) I/Q sinyallerini her biri diğerinden bağımsız olarak seçilmiş antenlerden iletir. Dahası I/Q sinyalleri arasındaki diklik sinüzoidal sinyallerin yarım periyodunda da korunmaktadır. ÇDUM bu iki özelliği kullanarak uzamsal modülasyonun (UM) dört katı biti uzaysal boyutta iletir. AYM, aç-kapa anahtarlamaya (AKA) kıyasla iki kat bant genişliği kullanırken, ÇDUM üç kat kullanır. Bu çalışmada ÇDUM performansı AYM-UM ve darbe genlik modülasyonlu uzamsal modülasyon (DGM-UM) ile karşılaştırılmış ve daha iyi bir performans sergilediği gösterilmiştir. Ek olarak, verici taraftaki LED sayısı arttıkça ÇDUM performansı artmaktadır.

Double Quadrature Spatial Intensity Modulation for Visible Light Communications

n this paper, a new spectrally efficient space modulation technique, which is called double quadrature spatial intensity modulation(DQSIM), is proposed for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Sub-carrier intensitymodulation (SCM), which ensures the use of in-phase/quadrature (I/Q) signals in intensity modulation direct detection (IM/DD)systems, is used as a digital modulation scheme. In RF, quadrature spatial modulation (QSM) transmits the I/Q signals through singleor multiple antennas selected independently from each other. Furthermore, the orthogonality between I and Q components is providedfor the half period of sinusoids. DQSIM utilizes these two features and transmits four fold more bits than spatial modulation (SM) viaspatial constellation. SCM uses two-fold bandwidth compared to on-off keying (OOK), while DQSIM uses three fold. DQSIMoutperforms benchmark modulation schemes, which are SCM-SM and pulse amplitude modulation spatial modulation (PAM-SM), atthe bit error rate (BER) value of $10^{-4}$. Furthermore DQSIM performance has increased with the increasing number of LEDs.

___

  • [1] Khan, L.U. 2017. Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, 3, 2, pp. 78-88. https://doi.org/10.1016/j.dcan.2016.07.004
  • [2] Jovicic, A. Li, J. and Richardson, T. 2013. Visible light communication: Opportunities, challenges and the path to market IEEE Commun. Mag. 51, 12, pp. 26-32. https://doi.org/10.1109/MCOM.2013.6685754
  • [3] Dimitrov, S. and Haas, H. 2015. Principles of LED Light Communications, Cambridge University Press, Cambridge, UK.
  • [4] Armstrong, J. 2009. OFDM for Optical Communications, IEEE Journal of Lightwave Tech., 27, 3, pp. 189-204. https://doi.org/10.1109/JLT.2008.2010061
  • [5] Barry, J. R. 1994. Wireless Infrared Communications, Norwell, MA Kluwer.
  • [6] Islim, M. S. and Haas, H. 2016. Modulation Techniques for Li-Fi, ZTE Communications, 14, 2, pp. 29-40. https://www.research.ed.ac.uk/portal/en/publications/modulation-techniques-for-lifi
  • [7] Celik, Y. and Akan, A. 2018. Subcarrier intensity modulation for MIMO visible light communications, Optics Communications, 412, pp. 90-101. https://doi.org/10.1016/ j.optcom.2017.12.002
  • [8] Zeng, L. and et al. 2009. High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting, IEEE Journal on Selected Areas in Comm., 27, 9, pp. 1654-1662. https://doi.org/10.1109/ JSAC.2009.091215
  • [9] Mesleh, R. and et al. 2011. Optical Spatial Modulation, IEEE/OSA Journal of Optical Communications and Networking, 3, 3, pp. 234-244. https://doi.org/10.1364/ JOCN.3.000234
  • [10] Fath, T. and Haas, H. 2013. Performance comparison of MIMO techniques for optical wireless communications in indoor environments, IEEE Transactions on Communications, 61, 2, pp. 733–742. https://doi.org/10.1109/ TCOMM.2012.120512.110578
  • [11] Mesleh, R. and et. al. 2008. Spatial modulation, IEEE Trans. Veh. Technol., 57, 4, pp. 2228-2241. https://doi.org/10.1109/TVT.2007.912136
  • [12] Mesleh, R., Ikki, S., and Aggoune H. 2015. Quadrature spatial modulation, IEEE Trans. Veh. Technol., 64, 6, pp. 2738-2742. https://doi.org/10.1109/TVT.2014.2344036
  • [13] Mesleh, R. and Alhassi, A. 2018. Space Modulation Techniques, Wiley, 1th Ed., Hoboken, USA.
  • [14] Nuwanpriya, A. and et al. 2015. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users, IEEE Journal on Selected Areas in Communications, 33, 9, pp. 1780-1792.
  • [15] You, R. and Kahn, J. M. 2001. Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals, IEEE Transactions on Communications, 49, 12, pp. 2164-2171. https://doi.org/10.1109/26.974263
  • [16] Y. Qiu and et al., 2018. Visible Light Communications Based on CDMA Technology, IEEE Wireless Communications, 25, 2, pp.178-185.
  • [17] A. Younis and et al., 2010. Generalized spatial modulation, Conf. Rec. Asilomar Signals, Syst., Comput., pp. 1498-1502, Pacific Grove, CA, USA.