Gazlı İçecek Endüstri Atık Suyunun Mikroalg ile Muamelesi ve Mikroalgal Yağın Biyoyakıt Üretimi için Değerlendirilmesi

Şehir, sanayi ve tarım faaliyetleri sonucunda her yıl büyük miktarlarda atık su üretilmektedir. Üretilen atık sular arıtılmalıdır. Atık suda varolan azot derişimi 1,9 mg/L değerinin üzerine çıktığında, mikroalglerin çoğalması için uygun çevresel koşullar sağlanır. Atıksu arıtma teknolojilerinde mikroalg varlığında arıtma, son yıllarda önem kazanmış ve arıtımda daha çevre dostu bir alternatif haline gelmiştir. Alternatif enerji kaynaklarının üretiminde hammadde kaynağı olarak biyokütlenin bulunabilirliği üzerine araştırmalar giderek önem kazanmaktadır. Bu çalışmada, atık su ortamlarında Chlorella variabilis mikroalg büyümesi, lipit üretkenliği ve nütrient giderimi araştırılmıştır. Mikroalglerin aşılanmasından önce atık su, katı parçacıkların uzaklaştırılması amacıyla 4000 rpm koşulunda santrifüjlenmiş ve farklı oranlarda (%0-40) musluk suyu ile seyreltilmiştir. Farklı oranlarda seyreltilmiş olan atıksular, 250 mL hacimli ağzı açık olan şişeler içinde Chlorella variabilis mikroalgi ile aşılanmış, 27 °C sıcaklık ve 200 rpm çalkalama hızına sahip olan inkübatörde, bir ay süre boyunca inkübe edilmiştir. İnkübasyon sonucunda maksimum mikroalg derişimi (Xmax = 1.03 gdw/L), hücre büyüme miktarı (µmax = 4.0 x$10^{-3};h^{-1}$ ) ve mikroalglerin ikiye katlanma süresine (173 saat) % 40 oranında musluk suyu ile seyreltilmiş olan atık su ortamında ulaşılmıştır. Mikroalgal biyokütleden elde edilen lipid yağ içeriği (% 21) ve lipit üretkenliği (6x$10^{-3}$ g/L.d), % 20 oranında seyreltilmiş atık su ortamı için eşzamanlı olarak belirlenmiştir. Mikroalg lipidlerinin oleik asit (C18:1, % 38) ve linolenik asit (C18:3, % 35) bakımından zengin olduğu tesbit edilmiştir. Mikroalglerin varlığında Kimyasal Oksijen İhtiyacı (KOİ) ve toplam fosfor giderimi etkinliği sırasıyla, yaklaşık olarak % 60 ve % 77 değerinde olmuştur. Deney sonuçlarına göre, atık suyun mikroalglerin varlığında arıtımı gelecekteki uygulamalar için umut vericidir.

Treatment of Fizzy Drink Factory Wastewaters by Microalgae and Evaluation of Algae Oil for Biofuel Production

As a result of city, industrial and agricultural activities, a large amount of wastewater is generated every year. The wastewater generatedmust be treated. When the nitrogen concentration in wastewater reaches more than 1.9 mg/L, favorable environmental conditions areprovided for the microalgae to multiply. In the presence of microalgae in wastewater treatment technologies, treatment has gainedimportance in recent years and has become a more environmentally-friendly alternative in treatment. Research on the availability ofbiomass as a source of raw materials in the production of alternative energy sources is increasingly important. In this paper, Chlorellavariabilis microalgae growth, lipid productivity and nutrient removal in wastewater media were investigated. Before the inoculation ofmicroalgae, wastewater was centrifuged at 4000 rpm to remove the solid particles and was diluted with tap water in different ratios (0-40%). Wastewaters were inoculated with Chlorella variabilis in 250 mL open flasks in a 200 rpm shaking incubator for a month at 27°C. After incubation maximum cell concentration (Xmax=1.03 gdw/L), growth rate (µmax=4.0 x$10^{-3};h^{-1}$), and doubling time (173 h) ofthe microalgae were reached in 40% diluted medium. Fat content (21%) and lipid productivity (6x$10^{-3}$ g/L.d) were determinedconcurrently for 20% diluted media. It was determined that microalgae lipids were rich in oleic (C18:1, 38%) and linolenic acid (C18:3,35%). The efficiency of COD (Chemical oxygen demand) and total phosphor removal in the presence of microalgae had been almost60% and 77% respectively. According to the experimental results, the treatment of wastewater in the presence of microalgae ispromising for future applications.

___

  • Abinandan, S., Shanthakumar, S. (2015). Challenges and opportunities in application of microalgae (ChloropHyta) for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 52, 123–132.
  • Bligh, E.G., Dyer, W.J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
  • David, F, Sandra P, Vickers, A.K. (2005). Column selection for the analysis of fatty acids methyl esters. Application Agilent Technolojies Inc.
  • Girard, J-M., Roy, M-L., Hafsa, B.M., Gagnon, J., Faucheux, N., Heitz, M., Tremblay, R., Deschenes, J-S. (2014). Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Research, 5, 241– 248.
  • Gopinath, A, Puhan, S, Nagarajan, G. (2009). Relating the cetane number of biodiesel fuels to their fatty acid composition: A critical study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223, 565-583.
  • Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., Jinpeng, L. (2011), Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102(21), 9884-9890.
  • Klopfenstein, W.E. (1985). Effect of molecular weights of fatty acid esters on cetane numbers as diesel fuel. Journal of American Oil Chemical Socitey, 62, 1029– 1031.
  • Levine, R. B., Costanza-Robinson, M.S., Spatafora, G.A. (2011). Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass and Bioenergy, 351, 40-49.
  • Li, C., Yang, H., Xia, X., Li, Y., Chen, L., Zhang, M., Zhang, M., Wang, W. (2013). High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization. Bioresource Technology 127, 248–255.
  • Magri, A., Beline, F., Dabert, F. (2013). Feasibility and interest of the anammox process as the treatment alternative for anaerobic digester supernatants in manure processing: An overview. Journal of Environmental Management, 131, 170-184.
  • Wu, L.F., Chen, P.C., Huang, A.P., Lee, C.M. (2012). The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresource Technology, 113,14-18.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç