Entegre MC-HFLTS & MAIRCA ve MABAC Yöntemleri Kullanılarak Yeraltı Çöp Konteynerleri İçin Kapsamlı Bir Yer Seçimi Problemi Analizi

Yeraltı çöp konteyner sistemleri, dar alanlarda düşey konumda çalışarak tüm çöp ve atıkların yer altında toplanmasını sağlayan ve etrafa koku ve su yayılmasını önleyen sistemlerdir. Yeraltı çöp konteynerlerinin klasik çöp konteynerlerine göre birçok avantajı bulunmaktadır. Bunlar; yer altındaki haznenin iç kaplaması sayesinde maruz kalınabilecek virüs ve bakteri kaynaklı hastalıkların oluşmasını önlemesi, yerden tasarruf sağlaması, çöp toplamada zaman tasarrufu sağlaması, çöplerin el değmeden hijyenik olarak toplanmasıdır. Ayrıca, daha az yer kaplayan birden fazla konteyner ile yerinde atık ayrıştırması sayesinde geri dönüşüme katkı sağlamaktadır. Bunlar gibi birçok avantajı olan yer altı çöp konteynerlerinin kullanımı giderek artmaktadır. Bu doğrultuda bu çalışmanın amacı yer altı çöp konteynerlerinin yerleştirilmesinde etkili olan kriterlerin belirlenmesi, kriter ağırlıklarının hesaplanması ve belirli bir bölge için çöp konteynerlerinin yerleştirileceği alternatif yerlerin değerlendirilmesidir. Literatür taraması sonucunda, yeraltı çöp konteynerleri için yer seçimi konusunda bir çalışma yapılmamıştır. Bu çalışmada, birleşik MC-HFLTS & MAIRCA yöntemi yeraltı çöp konteynerleri için alternatiflerin değerlendirilmesi ve en iyi yerin seçilmesinde kullanılmıştır. Bu yöntem, dilsel bilgiyi ifade etme esnekliğini artırabilir, ideal ve ampirik değerler arasındaki farkın tanımlar. Elde edilen sonuçlara göre, en önemli kriter, altyapı uygunluğu ($C_5$), ardından atık miktarı ($C_3$) ve sırasıyla nüfus yoğunluğu ($C_2$), kamu / özel kuruluş kurum sayısı ($C_4$) ve atık imha noktasına uzaklık ($C_1$) olarak belirlenmiştir. Alternatif sırası $A_3$> $A_1$> $A_2$ şeklindedir. Hesaplamada elde edilen sonuçlara göre, yeralt atık konteynerlerinin kurulacağı ilk yer Yakutiye ($A_3$) ilçesi ve Lalapaşa mahallesi ($B_3$)’dir. Sonuçların geçerliliğini kontrol etmek için MABAC yöntemi kullanılarak karşılaştırma analizi yapılmıştır. MC-HFLTS & MAIRCA ve MC-HFLTS & MABAC yöntemlerinde, $A_3$ ve $B_3$alternatifleri en iyisidir ve yeraltı çöp konteynerleri için alternatif sırası aynıdır.

A Comprehensive Analysis of Location Selection Problem for Underground Waste Containers Using Integrated MCHFLTS&MAIRCA and MABAC Methods

Underground waste container systems are the systems that operate vertically in confined spaces and provide the collection of all wasteand garbage under the ground and that prevent the spread of scent and water around. Underground waste containers have manyadvantages compared to classic waste containers. They prevent the formation of viruses and bacteria-based illnesses that may be exposeddue to the inner coating of the tank under the ground, save space, save time in the collection of waste and collect the wastes hygienicallyand untouched. Moreover, they contribute to recycling due to on-site waste sorting with more than one container taking a small place.The use of underground waste containers with many advantages as mentioned above is gradually increasing. In this respect, the purposeof this study is to determine the criteria that are effective in placing underground waste containers, to calculate the criteria weights andto evaluate alternative locations where waste containers will be placed for a particular region. As a result of the literature review, nostudy was conducted on the location selection for underground waste containers. In this study, the integrated MC-HFLTS&MAIRCAmethod was used to evaluate alternatives and select the best location for underground waste containers. This method may increase theflexibility of expressing linguistic information and define the difference between the ideal and empirical values. According to the resultsobtained, the most important criteria was determined as infrastructure efficiency ($C_5$), amount of waste ($C_3$) and population density ($C_2$),number of the institution of public/private organization ($C_4$) and distance to waste disposal point ($C_1$), respectively. The alternative orderis as $A_3$>$A_1$>$A_2$. According to the results obtained in the calculation, the first location where underground waste containers will beplaced is Yakutiye district (A3) and Lalapaşa neighborhood ($B_3$). The comparison analysis was performed using MABAC method tocheck the validity of the results. $A_3$ and $B_3$ alternatives are the best one and the order of location for underground waste containers isthe same in MC-HFLTS&MAIRCA and MC-HFLTS&MABAC methods.

___

  • Adar, T., & Delice, E. K. (2017). Evaluating Mental Work Load Using Multi-Criteria Hesitant Fuzzy Linguistic Term Set
  • (HFLTS). Turkish Journal of Fuzzy Systems (TJFS), 8(2). Adar, T., & Delice, E. K. (2018). Banka Sektöründe İnsan Hata Analizi İçin Yeni Bir Bütünleşik Yöntem: İFASS&ÇKKBDTK. Ergonomics, 1(2), 108-122.
  • Adar, T., & Delice, E. K. (2019). New Integrated Approaches Based on MC-HFLTS for Health-Care Waste Treatment Technology Selection. Journal of Enterprise Information Management. 32(4), 688-711.
  • Adar, T., Kılıç Delice, E., (2019) An integrated MC-HFLTS&MAIRCA method and application in cargo distribution companies, International Journal of Supply and Operations Management, Technical Note, Inpress.
  • Adem, A., & Dağdeviren, M.: A life insurance policy selection via hesitant fuzzy linguistic decision making model. Procedia Computer Science, 102, 398-405 (2016).
  • Aktas, A., & Kabak, M.: A model proposal for locating wind turbines. Procedia Computer Science, 102, 426-433(2016).
  • Bozanic Darko I., Pamucar Dragan S., & Karovic Samed M, (2016), “Use of the fuzzy AHP - MABAC hybrid model in ranking potential locations for preparing laying-up positions”, Vojnotehnički glasnik, 64, 705-729.
  • Can, G.F., Toktas, P, (2018) "A novel fuzzy risk matrix based risk assessment approach", Kybernetes, Vol. 47 Issue: 9, pp.1721-1751.
  • Chatterjee, K., Pamucar, D., Zavadskas, E. K.: Evaluating the performance of suppliers based on using the R'AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of Cleaner Production, 184, 101-129 (2018).
  • Debnath, A. Roy, J., Kar, S., Zavadskas, E.K., Antucheviciene, J, (2017), “A Hybrid MCDM Approach for Strategic Project Portfolio Selection of Agro By-Products”, Sustainability, 9, 33.
  • Gigović, L., Pamučar, D., Bajić, Z., & Milićević, M.: The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4), 372 (2016).
  • Gigović, L., Pamučar, D., Božanić, D., & Ljubojević, S, (2017), “Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia”, Renewable Energy, 103, 501-521.
  • Ji, P., Zhang, H. Y., & Wang, J. Q. (2018). “Selecting an outsourcing provider based on the combined MABAC–ELECTRE method using single-valued neutrosophic linguistic sets”. Computers & Industrial Engineering, 120, 429-441.
  • Kılıç Delice, E., & Can, G. F, (2017), “A Stochastic Approach for Failure Mode and Effect Analysis”, RAIRO - Operations Research, 51, 1077–1100.
  • Liang, W., Zhao, G., Wu, H., & Dai, B. (2019). “Risk assessment of rockburst via an extended MABAC method under fuzzy environment”. Tunnelling and Underground Space Technology, 83, 533-544.
  • Liu, H. C., You, J. X., & Duan, C. Y. (2019). “An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment”. International Journal of Production Economics, 207, 163-172.
  • Pamučar, D. Vasin, L. Lukovac, V, (2014), “Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model”, In Proceedings of the XVI International Scientific-expert Conference on Railways, Railcon, Niš, Serbia, 9–10 October, pp. 89–92.
  • Pamučar, D., & Ćirović, G,: The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC), Expert Systems with Applications, 42, 3016-3028 (2015).
  • Pamucar, D., Chatterjee, K., & Zavadskas, E. K. (2018). “Assessment of third-party logistics provider using multi-criteria decisionmaking approach based on interval rough numbers”. Computers & Industrial Engineering.
  • Pamučar, D., I. Petrović and G. Ćirović, (2018), “Modification of the Best–Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers”, Expert Systems with Applications, 91, 89-106.
  • Pamučar, D., Mihajlović, M., Obradović, R., Atanasković, P.: Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model. Expert Systems with Applications, 88, 58-80 (2017).
  • Pamučar, D., Stević, Ž., Zavadskas, E. K.: Integration of interval rough AHP and interval rough MABAC methods for evaluating university web pages. Applied Soft Computing, 67, 141-163 (2018).
  • Rodríguez, R. M., Liu, H., Martínez, L.: A fuzzy representation for the semantics of hesitant fuzzy linguistic term sets. In Foundations of Intelligent Systems (pp. 745-757). Springer, Berlin, Heidelberg (2014).
  • Rodriguez, R. M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems, 20(1), 109-119 (2012).
  • Roy, J., Chatterjee, K., Bandhopadhyay, A., & Kar, S, (2016), “Evaluation and selection of Medical Tourism sites: A rough AHP based MABAC approach”, arXiv preprint arXiv:1606.08962.
  • Roy, J., Ranjan, A., & Debnath, A, (2016), “An extended MABAC for multi-attribute decision making using trapezoidal interval type2 fuzzy numbers”, arXiv preprint arXiv:1607.01254.
  • Sennaroglu, B., Celebi, G. V.: A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173 (2018).
  • Shi, H., Liu, H.-C., Li, P., & Xu, X.-G, (2017), “An integrated decision making approach for assessing healthcare waste treatment technologies from a multiple stakeholder”, Waste management, 59, 508-517.
  • Stevic, Z., Pamucar, D., Vasiljevic, M., Stojic, G., Korica, S, (2017), “Novel Integrated Multi-Criteria Model for Supplier Selection: Case Study Construction Company”, Symmetry-Basel, 9, 34.
  • Stevic, Z., Pamucar, D., Zavadskas, E.K., Cirovic, G., Prentkovskis, O, (2017), “The Selection of Wagons for the Internal Transport of a Logistics Company: A Novel Approach Based on Rough BWM and Rough SAW Methods” Symmetry-Basel, 9, 25.
  • Stojić, G., Stević, Ž., Antuchevičienė, J., Pamučar, D., Vasiljević, M.: A Novel Rough WASPAS Approach for Supplier Selection in a Company Manufacturing PVC Carpentry Products. Information, 9(5), 121 (2018).
  • Topraklı, A. Y., Adem, A., & Dağdeviren, M.: A Courthouse site selection method using hesitant fuzzy linguistic term set: a case study for Turkey. Procedia Computer Science, 102, 603-610 (2016).
  • Wang, H., Jiang, Z., Zhang, H., Wang, Y., Yang, Y., & Li, Y. (2019). “An integrated MCDM approach considering demands-matching for reverse logistics”. Journal of Cleaner Production, 208, 199-210.
  • Wang, L., Peng, J. J., & Wang, J. Q. (2018). “A multi-criteria decision-making framework for risk ranking of energy performance contracting project under picture fuzzy environment”. Journal of Cleaner Production, 191, 105-118.
  • Xue, Y.-X., You, J.-X., Lai, X.-D., & Liu, H.-C, (2016), “An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information”, Applied Soft Computing, 38, 703-713.
  • Yavuz, M., Oztaysi, B., Onar, S. C., Kahraman, C.: Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Systems with Applications, 42(5), 2835-2848 (2015).
  • Yu, S. M., Wang, J., & Wang, J. Q. (2017). An interval type-2 fuzzy likelihood-based MABAC approach and its application in selecting hotels on a tourism website. International Journal of Fuzzy Systems, 19(1), 47-61.