Entegre MC-HFLTS & MAIRCA ve MABAC Yöntemleri Kullanılarak Yeraltı Çöp Konteynerleri İçin Kapsamlı Bir Yer Seçimi Problemi Analizi

Yeraltı Çöp Konteyner sistemleri, dar alanlarda düşey konumda çalışarak tüm çöp ve atıkların yer altında toplanmasını sağlayan ve etrafa koku ve su yayılmasını önleyen sistemlerdir. Yeraltı çöp konteynerlerinin klasik çöp konteynerlerına göre birçok avantajı bulunmaktadır. Bunlar; yer altındaki haznenin iç kaplaması sayesinde maruz kalınabilecek virüs ve bakteri kaynaklı hastalıkların oluşmasını önlemesi, yerden tasarruf sağlaması, çöp toplamada zaman tasarrufu sağlaması, çöplerin el değmeden hijyenik olarak toplanmasıdır. Ayrıca, daha az yer kaplayan birden fazla konteyner ile yerinde atık ayrıştırması sayesinde geri dönüşüme katkı sağlamaktadır. Bunlar gibi birçok avantajı olan yer altı çöp koyteynerlarının kullanımı giderek artmaktadır. Bu doğrultuda bu çalışmanın amacı yer altı çöp koyteynerlerının yerleştirilmesinde etkili olan kriterlerin belirlenmesi, kriter ağırlıklarının hesaplanması ve belirli bir bölge için çöp konteynerlerının yerleştirileceği alternatif yerlerin değerlendirilmesidir.  Literatür taraması sonucunda, yeraltı çöp konteynerleri için yer seçimi konusunda bir çalışma yapılmamıştır. Bu çalışmada, birleşik MC-HFLTS & MAIRCA yöntemi yeraltı çöp konteynerleri için alternatiflerin değerlendirilmesi ve en iyi yerin seçilmesinde kullanılmıştır. Bu yöntem, dilsel bilgiyi ifade etme esnekliğini artırabilir, ideal ve ampirik değerler arasındaki farkın tanımlar. Elde edilen sonuçlara göre, en önemli kriter, Altyapı Uygunluğu (C5), ardından atık miktarı (C3) ve sırasıyla Nüfus yoğunluğu (C2), Kamu / özel kuruluş kurum sayısı (C4) ve atık İmha noktasına uzaklık (C1) olarak belirlenmiştir. Alternatif sırası A3> A1> A2 şeklindedir. Hesaplamada elde edilen sonuçlara göre, yeraltı atık konteynerlerinin kurulacağı ilk yer Yakutiye (A3) ilçesi ve Lalapaşa mahallesi (B3)’dir. Sonuçların geçerliliğini kontrol etmek için MABAC yöntemi kullanılarak karşılaştırma analizi yapılmıştır. MC-HFLTS & MAIRCA ve MC-HFLTS & MABAC yöntemlerinde, A3 ve B3 alternatifleri en iyisidir ve yeraltı çöp konteynerleri için alternatif sırası aynıdır.

A Comprehensive Analysis of Location Selection Problem for Underground Waste Containers Using Integrated MC-HFLTS&MAIRCA and MABAC Methods

Underground Waste Container systems are systems that provide to collect all wastes and wastes under the ground working in confined spaces and in vertical position and that prevent spread of scent and water around. Underground waste containers have many advantages compared to conventional waste containers. These are; to prevent the formation of viruses and bacteria based illnesses that may be exposed due to the inner coating of the tank under the ground, to save space, to save time in the collection of waste, to collect the waste hygienically and untouchedly. Moreover, it contributes to recycling due to on-site waste separation with more than one container taking small place. The use of underground waste containers with many advantages is increasing. In this respect, the aim of this paper is to define the criteria that are effective in placing underground waste containers, to calculate the criteria weights and to evaluate alternative locations where waste containers will be placed for a particular region. As a result of the literature review, there was no study about the location selection for underground waste containers. In this study, the integrated MC-HFLTS&MAIRCA method is used for assessing and choosing the best location for underground waste containers. This method can increase the flexibility of representing linguistic information and it can reflect in defining the gap between the ideal and empirical ponders. According to the results obtained, the most important criterion was determined as Suitability of infrastructure (C5), followed by Amount of waste (C3), and respectively Population density (C2), Number of institution of public/private utility (C4) and Distance to waste disposal point (C1). The alternative order is as A3>A1>A2. According to the results obtained in the calculation, the first location for under ground waste containers is district of Yakutiye (A3) and neighborhood of Lalapaşa (B3). The comparison analysis is done using MABAC method to check the validity of the results. In the MC-HFLTS&MAIRCA and MC-HFLTS&MABAC methods, A3 and B3 alternatives are the best one and the ranking of location for underground waste containers is the same.

___

  • Adar, T., & Delice, E. K. (2017). Evaluating Mental Work Load Using Multi-Criteria Hesitant Fuzzy Linguistic Term Set (HFLTS). Turkish Journal of Fuzzy Systems (TJFS), 8(2).
  • Adar, T., & Delice, E. K. (2018). Banka Sektöründe İnsan Hata Analizi İçin Yeni Bir Bütünleşik Yöntem: İFASS&ÇK-KBDTK. Ergonomics, 1(2), 108-122.
  • Adar, T., & Delice, E. K. (2019). New Integrated Approaches Based on MC-HFLTS for Health-Care Waste Treatment Technology Selection. Journal of Enterprise Information Management. 32(4), 688-711.
  • Adar, T., Kılıç Delice, E., (2019) An integrated MC-HFLTS&MAIRCA method and application in cargo distribution companies, International Journal of Supply and Operations Management, Technical Note, Inpress.
  • Adem, A., & Dağdeviren, M.: A life insurance policy selection via hesitant fuzzy linguistic decision making model. Procedia Computer Science, 102, 398-405 (2016).
  • Aktas, A., & Kabak, M.: A model proposal for locating wind turbines. Procedia Computer Science, 102, 426-433(2016).
  • Bozanic Darko I., Pamucar Dragan S., & Karovic Samed M, (2016), “Use of the fuzzy AHP - MABAC hybrid model in ranking potential locations for preparing laying-up positions”, Vojnotehnički glasnik, 64, 705-729.
  • Can, G.F., Toktas, P, (2018) "A novel fuzzy risk matrix based risk assessment approach", Kybernetes, Vol. 47 Issue: 9, pp.1721-1751.
  • Chatterjee, K., Pamucar, D., Zavadskas, E. K.: Evaluating the performance of suppliers based on using the R'AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of Cleaner Production, 184, 101-129 (2018).
  • Debnath, A. Roy, J., Kar, S., Zavadskas, E.K., Antucheviciene, J, (2017), “A Hybrid MCDM Approach for Strategic Project Portfolio Selection of Agro By-Products”, Sustainability, 9, 33.
  • Gigović, L., Pamučar, D., Bajić, Z., & Milićević, M.: The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4), 372 (2016).
  • Gigović, L., Pamučar, D., Božanić, D., & Ljubojević, S, (2017), “Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia”, Renewable Energy, 103, 501-521.
  • Ji, P., Zhang, H. Y., & Wang, J. Q. (2018). “Selecting an outsourcing provider based on the combined MABAC–ELECTRE method using single-valued neutrosophic linguistic sets”. Computers & Industrial Engineering, 120, 429-441.
  • Kılıç Delice, E., & Can, G. F, (2017), “A Stochastic Approach for Failure Mode and Effect Analysis”, RAIRO - Operations Research, 51, 1077–1100.
  • Liang, W., Zhao, G., Wu, H., & Dai, B. (2019). “Risk assessment of rockburst via an extended MABAC method under fuzzy environment”. Tunnelling and Underground Space Technology, 83, 533-544.
  • Liu, H. C., You, J. X., & Duan, C. Y. (2019). “An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment”. International Journal of Production Economics, 207, 163-172.
  • Pamučar, D. Vasin, L. Lukovac, V, (2014), “Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model”, In Proceedings of the XVI International Scientific-expert Conference on Railways, Railcon, Niš, Serbia, 9–10 October, pp. 89–92.
  • Pamučar, D., & Ćirović, G,: The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC), Expert Systems with Applications, 42, 3016-3028 (2015).
  • Pamucar, D., Chatterjee, K., & Zavadskas, E. K. (2018). “Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers”. Computers & Industrial Engineering.
  • Pamučar, D., I. Petrović and G. Ćirović, (2018), “Modification of the Best–Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers”, Expert Systems with Applications, 91, 89-106.
  • Pamučar, D., Mihajlović, M., Obradović, R., Atanasković, P.: Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model. Expert Systems with Applications, 88, 58-80 (2017).
  • Pamučar, D., Stević, Ž., Zavadskas, E. K.: Integration of interval rough AHP and interval rough MABAC methods for evaluating university web pages. Applied Soft Computing, 67, 141-163 (2018).
  • Rodríguez, R. M., Liu, H., Martínez, L.: A fuzzy representation for the semantics of hesitant fuzzy linguistic term sets. In Foundations of Intelligent Systems (pp. 745-757). Springer, Berlin, Heidelberg (2014).
  • Rodriguez, R. M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems, 20(1), 109-119 (2012).
  • Roy, J., Chatterjee, K., Bandhopadhyay, A., & Kar, S, (2016), “Evaluation and selection of Medical Tourism sites: A rough AHP based MABAC approach”, arXiv preprint arXiv:1606.08962.
  • Roy, J., Ranjan, A., & Debnath, A, (2016), “An extended MABAC for multi-attribute decision making using trapezoidal interval type-2 fuzzy numbers”, arXiv preprint arXiv:1607.01254.
  • Sennaroglu, B., Celebi, G. V.: A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173 (2018).
  • Shi, H., Liu, H.-C., Li, P., & Xu, X.-G, (2017), “An integrated decision making approach for assessing healthcare waste treatment technologies from a multiple stakeholder”, Waste management, 59, 508-517.
  • Stevic, Z., Pamucar, D., Vasiljevic, M., Stojic, G., Korica, S, (2017), “Novel Integrated Multi-Criteria Model for Supplier Selection: Case Study Construction Company”, Symmetry-Basel, 9, 34.
  • Stevic, Z., Pamucar, D., Zavadskas, E.K., Cirovic, G., Prentkovskis, O, (2017), “The Selection of Wagons for the Internal Transport of a Logistics Company: A Novel Approach Based on Rough BWM and Rough SAW Methods” Symmetry-Basel, 9, 25.
  • Stojić, G., Stević, Ž., Antuchevičienė, J., Pamučar, D., Vasiljević, M.: A Novel Rough WASPAS Approach for Supplier Selection in a Company Manufacturing PVC Carpentry Products. Information, 9(5), 121 (2018).
  • Topraklı, A. Y., Adem, A., & Dağdeviren, M.: A Courthouse site selection method using hesitant fuzzy linguistic term set: a case study for Turkey. Procedia Computer Science, 102, 603-610 (2016).
  • Wang, H., Jiang, Z., Zhang, H., Wang, Y., Yang, Y., & Li, Y. (2019). “An integrated MCDM approach considering demands-matching for reverse logistics”. Journal of Cleaner Production, 208, 199-210.
  • Wang, L., Peng, J. J., & Wang, J. Q. (2018). “A multi-criteria decision-making framework for risk ranking of energy performance contracting project under picture fuzzy environment”. Journal of Cleaner Production, 191, 105-118.
  • Xue, Y.-X., You, J.-X., Lai, X.-D., & Liu, H.-C, (2016), “An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information”, Applied Soft Computing, 38, 703-713.
  • Yavuz, M., Oztaysi, B., Onar, S. C., Kahraman, C.: Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Systems with Applications, 42(5), 2835-2848 (2015).
  • Yu, S. M., Wang, J., & Wang, J. Q. (2017). An interval type-2 fuzzy likelihood-based MABAC approach and its application in selecting hotels on a tourism website. International Journal of Fuzzy Systems, 19(1), 47-61.