Endüstriyel Sünger Ezme Makinesinin Sonlu Elemanlar Yöntemi ile Yapısal Analizi

Özellikle mobilya, yatak, otomotiv, tekstil gibi sektörlerde kullanılan süngerlerde zamana ve yüke bağlı olarak deformasyon meydana gelmektedir. Bu durum müşteri memnuniyetinin azalmasına neden olmaktadır. Bu sorunu çözmek için sünger blokların iç yapısındaki boşlukların/kanalların yapışkanlık veya düzensizlik gibi oluşumların giderilmesi; kürleme ve üretim sonrası kısa vadede oluşacak deformasyonu en aza indirmek amacıyla sünger blok ezme yöntemi kullanılmaktadır. Bu çalışma ile ile sünger iç düzensizlikleri ortadan kaldıracak bir ezme makinesi geliştirilmiştir. Bu çalışmada tasarlanan kırma makinesini oluşturan parçaların geometrik optimizasyonu için yapısal analiz yapılmıştır. Bu amaçla sünger ezme makinası parçalarının lineer statik analizi yapılarak ANSYS Workbench yazılımı ile maksimum Von Misses gerilmesi, deformasyonu, emniyet katsayısı sonuçları ve gerekli optimizasyon bölgeleri belirlenmiştir. Elde edilen sonuçlar grafiklerle sunulmuştur.

Structural Analysis of Industrial Foam Crusher Machine By Using Finite Element Method

Especially in the foams used in sectors such as furniture, mattress, automotive, textile, deformation occurs depending on time and load. This situation leads to a decrease in customer satisfaction. In order to solve this problem, a machine has been developed to eliminate internal irregularities with the sponge block crushing method in order to eliminate the formations such as sticky or irregularity of the voids/channels in the inner structure of the sponge blocks after curing and to minimize the deformation that will occur in the short term after production. In this study, structural analysis was carried out for the geometric optimization of the parts that make up the crushing machine designed. For this purpose, linear static analysis of foam crusher parts is realized and maximum Von Misses stress, deformation, the factor of safety results and necessary optimization locations are determined via ANSYS Workbench software. The obtained results are presented in graphics.

___

  • Aslan, T., Esim, E., Ustun, Y., & Donmez Ozkan, H. (2021). Evaluation of Stress Distributions in Mandibular Molar Teeth with Different Iatrogenic Root Perforations Repaired with Biodentine or Mineral Trioxide Aggregate: A Finite Element Analysis Study. J Endod, 47(4), 631-640. doi:10.1016/j.joen.2020.11.018
  • Beer, F., E. Russell Johnston, J., Dewolf, J. T., & Mazurek, D. F. (2012). Mechanics of Materials. New York: McGraw-Hill Companies.
  • Chen, Y., Das, R., & Battley, M. (2017). Finite element analysis of the compressive and shear responses of structural foams using computed tomography. Composite Structures, 159, 784-799. doi:10.1016/j.compstruct.2016.09.091
  • De Mello, D., Pezzin, S. H., & Amico, S. C. (2009). The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polymer Testing, 28(7), 702-708. doi:10.1016/j.polymertesting.2009.05.014
  • Demirel, S., & Ergun Tuna, B. (2019). Evaluation of the cyclic fatigue performance of polyurethane foam in different density and category. Polymer Testing, 76, 146-153. doi:10.1016/j.polymertesting.2019.03.019
  • Demirtaş, A., & Bayraktar, M. (2019). Free Vibration Analysis of an Aircraft Wing by Considering as a Cantilever Beam. Selcuk University Journal of Engineering, Science and Technology, 7(1), 12-21. doi:10.15317/Scitech.2019.178
  • Gok, A., Yapıcı, F., Gulsoy, S. K., Kurt, S., Altun, S., Kilinc, I., & Korkmaz, M. (2012). Determination of Static Fatigue Performance of Upholstery Foams. Kastamonu Univ., Journal of Forestry Faculty, 12, 285-290.
  • H.Ulrich. (1983). Urethane Polymers. Kirk- Othmer Encyclopedia of Chemical Technology. New York.: J. Wiley.
  • Li, A., Yang, D. D., Li, H. N., Jiang, C. L., & Liang, J. Z. (2018). Flame-retardant and mechanical properties of rigid polyurethane foam/MRP/mg(OH 2/GF/HGB composites. Journal of Applied Polymer Science, 135(31), 46551. doi:10.1002/app.46551
  • Liu, W. (2021, 28-30 May 2021). Research on Technical Transformation and Innovative Design of Polyurethane Sponge Cutting Machine. Paper presented at the 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID).
  • Marsavina, L., Sadowski, T., Constantinescu, D. M., & Negru, R. (2008). Failure of Polyurethane Foams under Different Loading Conditions. Key Engineering Materials, 385-387, 205-208. doi:10.4028/www.scientific.net/KEM.385-387.205
  • Mustafa Tınkır, & Sezgen, H. Ç. (2017). Linear static analysis of hydraulic cylinder via finite element method. Omer Halisdemir University Journal of Engineering Sciences, Volume 6, Number 1, (2017), 203-212, 6(1), 203-212.
  • Quintero, M. W., Escobar, J. A., Rey, A., Sarmiento, A., Rambo, C. R., Oliveira, A. P. N. d., & Hotza, D. (2009). Flexible polyurethane foams as templates for cellular glass-ceramics. Journal of Materials Processing Technology, 209(12-13), 5313-5318. doi:10.1016/j.jmatprotec.2009.03.021
  • Samet Demirel, B. E. T. (2019). Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes. Kastamonu Univ., Journal of Forestry Faculty, 19(2), 225-234.
  • Yıldırım, Ş., Esim E.,. (2019). Modal Analysis of Double Beam Overhead Type Crane Systems by Finite Element Method. Konya Journal of Engineering Sciences, 7, 975-988. doi:10.36306/konjes.627067