Drimaren Orange Boyar Maddesinden Renk Gideriminde Destek Elektrolit Türü ve Konsantrasyonun etkisi

Bu çalışmada son yıllarda endüstrilerde sıklıkla kullanılmakta olan boyar maddelerden renk gideriminin ve sistemin elektrik tüketiminin incelenmesi amaçlanmıştır. Boyar madde olarak Drimaren Orange tercih edilmiştir. Elektrooksidasyon yöntemi kullanılarak yapılan çalışmalarda tuz türü olarak NaCI, KCI, NaNO3 ve Na2SO4 kullanılmıştır. 2.5, 5, 7.5 ve 10 mM tuz konsantrasyonlarında 1 saatlik denemelerde çalışmalar gerçekleştirilmiştir. Tuz türünün etkisini incelemek için yapılan çalışmalar 1 amper akımda, 250 mg/L kirletici madde konsantrasyonu, 5 mM NaCI ve 200 rpm karıştırma hızında atıksuyun doğal pH değerinde gerçekleştirilmiştir. İncelenen sonuçlarda en verimli elektrolitin %98.91 verimle KCI olmuştur. Bunu %93.35 verimle NaCI, %84.79 verimle NaNO3 ve %79.12 verimle Na2SO4 izlemiştir. Tuz konsantrasyonu etkisi için yapılan çalışmalarda tüm konsantrasyonlar için %99 üzerinde verimler elde edilmiş ve etkili giderim sağlandığı görülmüştür. Elektrik tüketimi etkisini incelemek için yapılan çalışmalarda destek elektrolit konsantrasyonu arttıkça elektrik tüketiminin azaldığı görülmüştür. Farklı elektrolitlerin elektrik tüketiminde ise renk giderim verimleri ile ters orantılı sonuçların olduğu görülmüştür. En yüksek verim elde edilen KCI elektrolitinde en düşük elektrik tüketimi gözlemlenmiştir.

Effect of Supporting Electrolyte Type and Concentration on Color Removal from Drimaren Orange Dyestuff

In this study, it is aimed to examine the color removal of dyestuffs that have been used frequently in industries in recent years and the electricity consumption of the system. Drimaren Orange was preferred as the dyestuff. In studies using electrooxidation method, NaCl, KCl, NaNO3 and Na2SO4 were used as salt types. Studies were carried out in 1-hour trials at 2.5, 5, 7.5 and 10 mM salt concentrations. Studies to examine the effect of salt type were carried out at 1 ampere current, 250 mg/L pollutant concentration, 5 mM NaCl and 200 rpm mixing speed at natural pH value of wastewater. In the results examined, the most efficient electrolyte was KCl with 98.91% efficiency. This was followed by NaCl with 93.35% yield, NaNO3 with 84.79% yield and Na2SO4 with 79.12% yield. In the studies carried out for the effect of salt concentration, efficiencies above 99% were obtained for all concentrations and it was observed that effective removal was achieved. In studies conducted to examine the effect of electricity consumption, it has been observed that as the support electrolyte concentration increases, the electricity consumption decreases. In the electricity consumption of different electrolytes, it was observed that the results were inversely proportional to the color removal efficiencies. The lowest electricity consumption was observed in the KCl electrolyte with the highest efficiency.

___

  • Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603-643.
  • Buscio, V., López-Grimau, V., Álvarez, M., & Gutiérrez-Bouzán, C. (2019). Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chemical Engineering Journal, 373, 161-170.
  • Chequer, F. D., De Oliveira, G. R., Ferraz, E. A., Cardoso, J. C., Zanoni, M. B., & de Oliveira, D. P. (2013). Textile dyes: dyeing process and environmental impact. Eco-friendly textile dyeing and finishing, 6(6), 151-176.
  • Chiang, L.-C., Chang, J.-E., & Wen, T.-C. (1995). Electrochemical treatability of refractory pollutants in landfill leachate. Hazardous waste and hazardous materials, 12(1), 71-82.
  • Chou, W.-L., & Wang, C.-T. (2011). Removal of color and COD from dyeing wastewater by paired electrochemical oxidation. Fresenius Environmental Bulletin, 20, 78-85.
  • Directors, E. W. (2016). Common Implementation Strategy for The Water Framework Directive and The Floods Directive. Guidelines on Integrating Water Reuse into Water Planning and Management in the Context of the WFD.
  • Ergas, S. J., Therriault, B. M., & Reckhow, D. A. (2006). Evaluation of water reuse technologies for the textile industry. Journal of Environmental engineering, 132(3), 315-323.
  • Erkmen, J., & AdigÜZel, M. (2022). Acid red-20 sentetik endüstriyel boyar maddenin elektro-oksidasyon yöntemi ile sulu çözeltiden uzaklaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 363-371.
  • Fil, B. A., & Günaslan, S. (2022). Electrooxidation treatment of slaughterhouse wastewater: investigation of efficiency of Ti/Pt anode. Particulate Science and Technology, 1-10.
  • Fil, B. A., & Günaslan, S. (2023). Treatment of Slaughterhouse Wastewaters with Ti/IrO2/RuO2 Anode and Investigation of Energy Consumption. Arabian Journal for Science and Engineering, 48, 457-466. doi: 10.1007/s13369-022-07233-2
  • Gutierrez, M., & Crespi, M. (1999). A review of electrochemical treatments for colour elimination. Coloration Technology, 115(11), 342-345.
  • Keyikoğlu, R. (2018). Boyar maddelerin molekül ağırlığının elektrooksidasyon ve elektrokoagülasyon proseslerinde renk giderme verimine etkisi. Bursa Teknik Üniversitesi.
  • López‐Grimau, V., Gutiérrez‐Bouzán, M. d. C., Valldeperas, J., & Crespi, M. (2012). Reuse of the water and salt of reactive dyeing effluent after electrochemical decolorisation. Coloration Technology, 128(1), 36-43.
  • Martínez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 87(3-4), 105-145.
  • Naim, M. M., & El Abd, Y. M. (2002). Removal and recovery of dyestuffs from dyeing wastewaters. Separation and Purification Methods, 31(1), 171-228.
  • Pinto, C., Fernandes, A., Marques, A., Ciríaco, L., Miguel, R. A. L., Lopes, A., & Pacheco, M. J. (2022). Reuse of wool dyeing wastewater after electrochemical treatment at a BDD anode. Journal of Water Process Engineering, 49, 102972. doi: https://doi.org/10.1016/j.jwpe.2022.102972
  • Riera-Torres, M., Gutierrez-Bouzan, M. C., Valldeperas Morell, J., Jose Lis, M., & Crespi, M. (2011). Influence of electrochemical pre-treatment in dyeing wastewater reuse for five reactive dyes. Textile research journal, 81(18), 1926-1939.
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255.
  • Sala, M., López-Grimau, V., & Gutiérrez-Bouzán, C. (2014). Photo-electrochemical treatment of reactive dyes in wastewater and reuse of the effluent: Method optimization. Materials, 7(11), 7349-7365.
  • Yaseen, D., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16, 1193-1226.