Diazonyum Tuzu Kullanılarak Elektrokimyasal Olarak ModifiyeEdilmiş Karbon Kompozit Elektrot

Karbon kompozit termoplastik elektrotlar (TPE'ler), grafit, termoplastik bağlayıcı ve çözücü kullanılarak üretilmiştir. TPE'ler, yüksekiletkenlik, iyi elektron transfer kinetiği, düşük maliyetli olma, kolay şekil verilebilme ve tekrar kullanılabilirlik gibi üstün özelliklerinedeniyle kullanılmıştır. TPE'ler, ilk kez p-nitroanilin kullanılarak aril diazonyum tuzları ile modifiye edilmiştir. Termoplastikelektrotlar için diazonyum iyon sentezine dayanan bir modifikasyon yöntemi geliştirilmiştir. Sulu fazda bir aril amin, p-tolüensülfonikasit ve sodyum nitrit karışımı hazırlanmış ve diazonyum tuzunun sentezlenmesi için birlikte öğütülmüştür. Reaksiyon sonucundadiazonyum iyonu oluşumunun göstergesi olarak pastanın rengi yeşil renkten sarı renge dönüşmüştür. Diazonyum iyonununsentezlenmesi ve graf edilmesi için 4-nitroanilin kullanılmıştır. Termoplastik elektrot yüzeyinde üretilen nitrofenil monodiazonyumkatyonları elektrokimyasal olarak aminofenil gruplarına indirgenmiştir. Elektrotun yüzeyindeki aminofenil gruplarının varlığı elektrokimyasal yolla doğrulanmıştır. Sulu asidik ortamdaki elektrokimyasal indirgeme işleminden sonra, 4-aminofenil ile modifiyeedilen termoplastik elektrotun elektrokimyasal davranışı ferrisiyanür varlığında araştırılmıştır. Dönüşümlü voltametri ile elektrotyüzeyinde graf edilen grupların oluşması nedeniyle karakteristik pikler elde edilmiştir. Ag/AgCl referans elektrota karşı yaklaşık -0,4V'de 4-aminofenilin indirgenerek amino grupları oluşmuştur. Modifiye edilen TPE'ler ile tarama hızı testi yapılarak anodik pik akımın100 mV/s'ye kadar lineer bir davranış gösterdiği gözlemlenmiştir. Bu da elektroaktif türlerin TPE yüzeyine graf edildiğinigöstermiştir. Ayrıca, sentezlenmiş diazonyum tuzunun elektrot yüzeyi üzerindeki inkübasyon süresi optimize edilmiştir ve optimuminkübasyon süresi 5 dakika olarak bulunmuştur.

Electrochemically Modified Carbon Composite Electrode Using Diazonium Salt

Carbon composite thermoplastic electrodes (TPEs) were fabricated using graphite, thermoplastic binder and solvent. TPEs were useddue to their outstanding properties such as high conductivity, good electron transfer kinetics, inexpensive, easy patterning andreusability. TPEs were modified with aryl diazonium salts using p-nitroaniline for the first time. An in-situ modification methodbased on diazonium ion synthesis was developed for thermoplastic electrodes. A mixture of aryl amine, p-toluenesulfonic acid, andsodium nitrite in aquous phase was prepared and grinded together in order to synthesize diazonium salts. A color change (from greento yellow) of the synthesized paste occurred upon reaction, which indicated diazonium ion formation. 4-nitroaniline was used tosynthesize and graft diazonium ion. In-situ generated nitrophenyl monodiazonium cations were electrochemically reduced toaminophenyl groups on the surface of the thermoplastic electrode. The presence of aminophenyl groups on the surface of theelectrode was confirmed via electrochemistry. After electrochemical reduction in aqueous acidic media, the electrochemical behaviorof a 4-aminophenyl modified thermoplastic electrode was investigated in the presence of ferricyanide. Characteristic peaks wereobtained due to the formation of grafted groups on the electrode surface by cyclic voltammetry. The reduction of the 4-aminophenyl resulted in the product of amino groups at about -0.4 V versus Ag/AgCl reference electrode. A scan rate study was performed bymodified TPEs and a linear dependence of the anodic peak current was observed up to 100 mV/s indicating that the electroactivespecies were grafted at the TPE surface. Furthermore, incubation time of synthesized diazonium salt on the electrode surface wasoptimized and found as 5 min.

___

  • Agullo, J., Canesi, S., Schaper, F., Morin, M., & Bélanger, D. (2012). Formation and reactivity of 3-diazopyridinium cations and influence on their reductive electrografting on glassy carbon. Langmuir, 28(10), 4889-4895.
  • Bagheryan, Z., Raoof, J.-B., Golabi, M., Turner, A. P., & Beni, V. (2016). Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosensors and Bioelectronics, 80, 566-573.
  • Baizer, M., & Lund, H. (1983). Organic Electrochemistry'Marcel Dekker. New York.
  • Barrière, F., & Downard, A. J. (2008). Covalent modification of graphitic carbon substrates by non-electrochemical methods. Journal of Solid State Electrochemistry, 12(10), 1231-1244.
  • Berg, K. E., Leroux, Y. R., Hapiot, P., & Henry, C. S. (2019). Increasing Applications of Graphite Thermoplastic Electrodes with Aryl Diazonium Grafting. ChemElectroChem, 6(18), 4811-4816.
  • Cline, K. K., Baxter, L., Lockwood, D., Saylor, R., & Stalzer, A. (2009). Nonaqueous synthesis and reduction of diazonium ions (without isolation) to modify glassy carbon electrodes using mild electrografting conditions. Journal of Electroanalytical Chemistry, 633(2), 283- 290.
  • Delamar, M., Hitmi, R., Pinson, J., & Saveant, J. M. (1992). Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 114(14), 5883-5884.
  • Demir, A., Küçükkolbaşı, S., & Sayın, S. Kaliks [4] aren Nanopartikül Bazlı Modifiye Katı Elektrot Yüzeyleri Kullanılarak Cd (II) nin Voltametrik Tayini. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 43(1), 15-25.
  • Gomez, M. E., & Kaifer, A. E. (1992). Voltammetric behavior of a ferrocene derivative: A comparison using surfaceconfined and diffusion-controlled species. Journal of Chemical Education, 69(6), 502.
  • Heard, D., & Lennox, A. (2020). Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie International Edition.
  • Hetemi, D., Noël, V., & Pinson, J. (2020). Grafting of diazonium salts on surfaces: application to biosensors. Biosensors, 10(1), 4.
  • Jasmin, J.-P., Ouhenia-Ouadahi, K., Miserque, F., Dumas, E., Cannizzo, C., & Chaussé, A. (2016). Straightforward grafting approach for cyclam-functionalized screenprinted electrodes for selective Cu (II) determination. Electrochimica Acta, 200, 115-122.
  • Kauffmann, J., Laudet, A., & Patriarche, G. (1982). THE MODIFIED CARBON PASTE ELECTRODE-ITS USE IN DIFFERENTIAL PULSE ANODICSTRIPPING VOLTAMMETRY IN THE PRESENCE OF A MERCURY FILM. ANALYTICAL LETTERS PART A-CHEMICAL ANALYSIS, 15(9), 763-774.
  • Klunder, K. J., Nilsson, Z., Sambur, J. B., & Henry, C. S. (2017). Patternable solvent-processed thermoplastic graphite electrodes. Journal of the American Chemical Society, 139(36), 12623-12631.
  • McCreery, R. L. (2008). Advanced carbon electrode materials for molecular electrochemistry. Chemical reviews, 108(7), 2646-2687.
  • Mussa, Z. H., Othman, M. R., & Abdullah, M. P. (2015). Electrochemical oxidation of landfill leachate: investigation of operational parameters and kinetics using graphite-PVC composite electrode as anode. Journal of the Brazilian Chemical Society, 26(5), 939- 948.
  • Ortiz, B., Saby, C., Champagne, G., & Bélanger, D. (1998). Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media. Journal of Electroanalytical Chemistry, 455(1-2), 75-81.
  • Pandurangappa, M., Ramakrishnappa, T., & Compton, R. G. (2009). Functionalization of glassy carbon spheres by ball milling of aryl diazonium salts. Carbon, 47(9), 2186-2193.
  • Rana, A., Baig, N., & Saleh, T. A. (2019). Electrochemically pretreated carbon electrodes and their electroanalytical applications–a review. Journal of Electroanalytical Chemistry, 833, 313-332.
  • Randviir, E. P., Brownson, D. A., Metters, J. P., Kadara, R. O., & Banks, C. E. (2014). The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. Physical Chemistry Chemical Physics, 16(10), 4598-4611.
  • Regel, A., & Lunte, S. (2013). Integration of a graphite/poly (methyl‐methacrylate) composite electrode into a poly (methylmethacrylate) substrate for electrochemical detection in microchips. Electrophoresis, 34(14), 2101- 2106.
  • Rubinstein, I. (1985). Voltammetric study of nitrobenzene and related compounds on solid electrodes in aqueous solution. Journal of electroanalytical chemistry and interfacial electrochemistry, 183(1-2), 379-386.
  • Shul, G., Parent, R., Mosqueda, H. A., & Bélanger, D. (2013). Localized in situ generation of diazonium cations by electrocatalytic formation of a diazotization reagent. ACS applied materials & interfaces, 5(4), 1468-1473.
  • Tsutsumi, H., Furumoto, S., Morita, M., & Matsuda, Y. (1995). Electrochemical behavior of a 4-nitrothiophenol modified electrode prepared by the self-assembly method. Journal of colloid and interface science, 171(2), 505-511.
  • Via, G. G., Shugart, C. L., Melnyk, S. L., Hupman, S. R., & Cline, K. K. (2018). One‐step Solvent‐free Synthesis and Grafting of Diazonium Ions at Glassy Carbon Electrodes. Electroanalysis, 30(10), 2421-2426.
  • Yang, K.-L., Yiacoumi, S., & Tsouris, C. (2003). Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry. Journal of Electroanalytical Chemistry, 540, 159-167.
  • Zhao, W., Tong, B., Pan, Y., Shen, J., Zhi, J., Shi, J., & Dong, Y. (2009). Fabrication, electrochemical, and optoelectronic properties of layer-by-layer films based on (phthalocyaninato) ruthenium (II) and triruthenium dodecacarbonyl bridged by 4, 4′-bipyridine as ligand. Langmuir, 25(19), 11796-11801.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç