Covid-19 Geçici Aşılama Kliniklerinin Atanmasına Sezgisel Bir Yaklaşım

Covid-19 virüsü nedeniyle Dünya Sağlık Örgütü tarafından 2020 yılında pandemi ilan edildi. Çeşitli ülkelerde, Covid-19 virüsüne karşı insan vücuduna bağışıklık kazandıran çok sayıda aşının üretimi çalışmaları halen devam etmektedir. Bu virüsle baş etmek için toplu aşılama çalışmaları yapılmaktadır. Toplu aşılama, aşıları ulaştırma ve süreç yönetimi açısından çok zor ve karmaşık bir iştir. Tüm hastaneler ve diğer sağlık merkezleri insanları aşılamak için kullanılsa da, sağlık merkezlerindeki Covid-19 hastalarını diğer hastalardan ayırmak ve aşıya daha hızlı erişim sağlanması için geçici aşı klinikleri de düşünülebilir. Bu çalışmada, İstanbul/ Türkiye'de yer alan bir ilçenin altı bölgesine hizmet verecek geçici aşı kliniklerinin aday yerlere atamaları incelenmiştir. Problemin doğrusal formülasyonu verilerek, Covid-19 aşılaması için çoklu tesis yerleşim problemi, revize edilmiş sezgisel tasarruf algoritması ile araştırılmıştır. Buna ek olarak, daha uygun maliyetli atama sonuçları incelenmiştir. Bölgenin tüm taleplerinin karşılanmak zorunda olunmadığı durumda toplam maliyeti gözlemlemek için Lagrange gevşetmesi kullanılmış ve ana modelle karşılaştırma yapılmıştır. Sonuçlar gelecekteki geçici merkezleri atama çalışmalarına rehberlik etmeyi amaçlamaktadır.

A Heuristic Approach for Assignments of Covid-19 Temporary Vaccination Clinics

Due to the Covid-19 virus, a pandemic is declared by World Health Organization in 2020. In various countries, studies on the production of many vaccines that give immunity to the human body against the Covid-19 virus still continue. Mass vaccination has been carried out to deal with this virus. This process is a very difficult and complex task in terms of fast transportation and process management. Although all hospitals and other health centers are used to vaccinate people, temporary vaccination clinics can also be considered to separate Covid-19 patients in health centers from other patients and provide faster access to the vaccine. In this study, the location assignments of temporary vaccination clinics that will serve six regions of a district in Istanbul/Turkey are examined. The linear formulation of the problem is given, and the multi-facility location problem for Covid-19 vaccination is investigated with the revised saving heuristic algorithm. In addition, more cost-effective assignment results more examined and compared with the main model using Lagrange relaxation to observe the total cost of not assigning all demands of regions. The results are intended to guide future temporary center assignment studies.

___

  • Abdel-Basset, M., Manogaran, G., El-Shahat, D. & Mirjalili, S., 2018. Integrating the Whale Algorithm with Tabu Search for Quadratic Assignment Problem: A New Approach for Locating Hospital Departments. Applied Soft Computing, 73, 530-546. https://doi.org/10.1016/j.asoc.2018.08.047
  • Ackerson, B. K., Sy, L. S., Glenn, S. C., Qian, L., Park, C. H., Riewerts, R. J., & Jacobsen, S. J. (2021). Pediatric vaccination during the COVID-19 pandemic. Pediatrics, 148(1). https://doi.org/10.1542/peds.2020-047092
  • Bartsch, S. M., Taitel, M. S., DePasse, J. V., Cox, S. N., Smith-Ray, R. L., Wedlock, P., Singh, T. G., Carr, S., Siegmund, S.S. & Lee, B. Y., 2018. Epidemiologic and Economic Impact of Pharmacies as Vaccination Locations during an Influenza Epidemic. Vaccine, 36(46), 7054-7063. https://doi.org/10.1016/j.vaccine.2018.09.040
  • Chen, W., Misra, S. M., Zhou, F., Sahni, L. C., Boom, J. A. & Messonnier, M., 2020. Evaluating Partial Series Childhood Vaccination Services in a Mobile Clinic Setting. Clinical Pediatrics, 59(7), 706-715. https://doi.org/10.1177/0009922820908586
  • Clarke, G. & Wright, J. W., 1964. Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research, 12(4), 568-581. https://doi.org/10.1287/opre.12.4.568
  • Çakır, E., Taş, M.A. & Ulukan, Z. 2021. Neutrosophic Fuzzy Weighted Saving Heuristic for COVID-19 Vaccination. In 2021 Systems and Information Engineering Design Symposium (SIEDS), IEEE, 1-4. https://doi.org/10.1109/SIEDS52267.2021.9483794
  • Çakır, E, Taş, M.A. & Ulukan, Z., 2022. Spherical Bipolar Fuzzy Weighted Multi-facility Location Modeling for Mobile COVID-19 Vaccination Clinics. Journal of Intelligent & Fuzzy Systems, 42(1), 237 – 250. https://doi.org/10.3233/JIFS-219189
  • Gianfredi, V., Pennisi, F., Lume, A., Ricciardi, G. E., Minerva, M., Riccò, M., ... & Signorelli, C. (2021). Challenges and opportunities of mass vaccination centers in COVID-19 times: a rapid review of literature. Vaccines, 9(6), 574. https://doi.org/10.3390/vaccines9060574
  • Giles, M. L., Hickman, J., Lingam, V. & Buttery, J., 2018. Results from a Mobile Outreach Influenza Vaccination Program for Vulnerable and High‐risk Populations in a High‐income Setting: Lessons Learned. Australian and New Zealand Journal of Public Health, 42(5), 447-450. https://doi.org/10.1111/1753-6405.12810
  • Hannings, A. N., Duke, L. J., Logan, L. D., Upchurch, B. L., Kearney, J. C., Darley, A., Welch, L. H., Brooks, K. L. & McElhannon, M. B., 2019. Patient Perceptions of Student Pharmacist–run Mobile Influenza Vaccination Clinics. Journal of the American Pharmacists Association, 59(2), 228-231. https://doi.org/10.1016/j.japh.2018.10.018
  • Hansen, P. H., Hegedahl, B., Hjortkjaer, S. & Obel, B., 1994. A Heuristic Solution to the Warehouse Location-routing Problem. European Journal of Operational Research, 76(1), 111-127. https://doi.org/10.1016/0377-2217(94)90010-8
  • Heymann, D. L. & Aylward, R. B., 2006. Mass Vaccination: When and Why. Mass Vaccination: Global Aspects—Progress and Obstacles, Springer, Berlin, Heidelberg, 1-16. https://doi.org/10.1007/3-540-36583-4_1
  • Kim, N. & Mountain, T. P., 2017. Role of Non-traditional Locations for Seasonal Flu Vaccination: Empirical Evidence and Evaluation. Vaccine, 35(22), 2943-2948. https://doi.org/10.1016/j.vaccine.2017.04.023
  • Kuehn, A. & Hamburger M. J., 1963. A Heuristic Program for Locating Warehouses. Management Science, 9, 643–666. https://doi.org/10.1287/mnsc.9.4.643
  • Lee, B. Y., Mehrotra, A., Burns, R. M. & Harris, K. M., 2009. Alternative Vaccination Locations: Who Uses Them and Can They Increase Flu Vaccination Rates?. Vaccine, 27(32), 4252-4256. https://doi.org/10.1016/j.vaccine.2009.04.055
  • Leibowitz, A., Livaditis, L., Daftary, G., Pelton-Cairns, L., Regis, C., & Taveras, E. (2021). Using mobile clinics to deliver care to difficult-to-reach populations: A COVID-19 practice we should keep. Preventive Medicine Reports, 24, 101551. https://doi.org/10.1016/j.pmedr.2021.101551
  • Mills-Tettey, G. A., Stentz, A. & Dias, M. B., 2007. The Dynamic Hungarian Algorithm for the Assignment Problem with Changing Costs. Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27. https://www.ri.cmu.edu/pub_files/pub4/mills_tettey_g_ayorkor_2007_3/mills_tettey_g_ayorkor_2007_3.pdf
  • New York Times (NY Times). (2022). Tracking Coronavirus Vaccinations Around the World. https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html
  • Plotkin, S. (2014). History of vaccination. Proceedings of the National Academy of Sciences, 111(34), 12283-12287. https://doi.org/10.1073/pnas.1400472111
  • Ross, G. T. & Soland, R. M., 1975. A Branch and Bound Algorithm for the Generalized Assignment Problem. Mathematical Programming, 8(1), 91-103. https://doi.org/10.1007/BF01580430
  • Srivastava, R., 1993. Alternate Solution Procedures for the Location-routing Problem. Omega, 21(4), 497-506. https://doi.org/10.1016/0305-0483(93)90082-V
  • Van Barneveld, T. C., Bhulai, S. & van der Mei, R. D., 2016. The Effect of Ambulance Relocations on the Performance of Ambulance Service Providers. European Journal of Operational Research, 252(1), 257-269. https://doi.org/10.1016/j.ejor.2015.12.022
  • World Health Organization (WHO). (2021). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
  • Wimmert, R. J., 1958. A Mathematical Method of Equipment Location. Journal of Industrial Engineering, 9, 498-505.
  • Yang, S., Hamedi, M. & Haghani, A., 2004. Integrated Approach for Emergency Medical Service Location and Assignment Problem. Transportation research record, 1882(1), 184-192. https://doi.org/10.3141/1882-22