Biyokömür İnkübasyonunun Buğday Verimi ve Bazı Verim Parametrelerine Etkisi

Araştırmada dört yıl inkübasyona bırakılmış biyokömürlerin buğdayın bazı verim ve verim öğelerine etkisini incelemek amaçlanmıştır. Bu amaçla 2017 yılında, dört saat boyunca 300, 500 ve 700 0C derecelerde piroliz edilmiş biyokömürlerden parseller dekara 3 ton olacak şekilde uygulama yapılmıştır. 2020-2021 yetiştirme döneminde ise bitki yetiştirme denemesi kurulmuştur. Deneme sonuçlarına bakıldığında, biyokömür uygulamalarının buğdayın vejetatif gelişmesini artırdığı, buna karşılık tane verimini azalttığı belirlenmiştir. Dahası, biyokömür uygulamaları hasat indeksi, başak boyu, bitki tane sayısı, kardeşlenme ve tane protein içeriklerini olumsuz etkilemiştir. Araştırmadan elde edilen bulgular göstermiştir ki, alkali bir toprağa uygulanarak uzun süre inkübasyona bırakılmış biyokömür buğdayın vejetatif gelişimini artırırken, tane verimini olumsuz etkilemiştir.

Effect of Biochar Incubation on Yield and Some Yield Parameters of Wheat

This study investigated the effects of biochars on some yield and yield components of wheat after a four-year application. For this, biochars pyrolized at 300, 500, and 700C during four hours were applied to the plots at a rate of 3 t/da in 2017 and left for incubation for four years. In 2020-2021 growing season, plant growth experiment was planned. Experiment results showed that biochar applications enhanced wheat vegetative growth but the yield of grain decreased with biochar application. Moreover, the effect of biochar on some yield and quality criteria such as harvest index, ear length, plant grain number, tillering and grain protein ratio was negative. Findings from this study indicated that biochars incubated for a long time in an alkaline soil, increased the straw yield of wheat, but biochar had a negative effect on some grain yield and some yield parameters.

___

  • Alburquerque, J. A., Salazar, P., Barrón, V., Torrent, J., del Campillo, M. D. C., Gallardo, A., & Villar, R. (2013). Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33(3), 475-484.
  • Allison, L.E., Moodie, C.D., 1965. Carbonate. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. 9, 1379-1396.
  • Alpaslan, M., Güneş, A., & İnal, A. (1998). Deneme tekniği. Ankara Üniversitesi Ziraat Fakültesi Yayın, 1501, 455.
  • Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., ... & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field crops research, 111(1-2), 81-84.
  • Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5(2), 202-214.
  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437-444.
  • Erdal, İ., Memici, M., Ekinci, K., & Sukuşu, E. (2019). Effects of tomato harvest residue derived biochars obtained from different pyrolysis temperature on periodical available nutrient concentrations of soils. Mediterranean Agricultural Sciences, 32, 75-78.
  • Erdal, İ., Memici, M., Ekinci, K., & Sukuşu, E. (2021). Periodical changes of some soil properties of a calcareous soil under field conditions as affected by different biochar applications. ROMANIAN AGRICULTURAL RESEARCH, 38, 203-213.
  • Erdal, İ., Memici, M., Ekinci, K., & Sukuşu, E. (2021). Periodical Changes Of Some Soil Properties Of A Calcareous Soil Under Field Conditions As Affected By Different Biochar Applications. Romanian Agricultural Research, No. 38, 204-2013 www.incda-fundulea.ro Print ISSN 1222‒4227; Online ISSN 2067‒5720.
  • Eyüpoğlu, F. (1999). Türkiye Topraklarının Verimlilik Durumu. Köy Hizmetleri Genel Müdürlüğü-Toprak ve Gübre Araştırma Enstitüsü Yayınları. Genel Yayın No: 220 Ankara.
  • Fiorentino, N., Sánchez-Monedero, M. A., Lehmann, J., Enders, A., Fagnano, M., & Cayuela, M. L. (2019). Interactive priming of soil N transformations from combining biochar and urea inputs: A 15N isotope tracer study. Soil Biology and Biochemistry, 131, 166-175.
  • Glaser, B., Wiedner, K., Seelig, S., Schmidt, H. P., & Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy for Sustainable Development, 35(2), 667-678.
  • GÖKOĞLU, B., & ÇAYCİ, G. (2021). Organik Materyal Kullanımının Alkali Bir Toprağın Bazı Islah Göstergeleri Üzerine Etkisi. Toprak Su Dergisi, 10(1), 60-67.
  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.
  • Günal, E., & Erdem, H. (2018). Biyokömür; Tanımı, Kullanımı ve Tarım Topraklarındaki Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 15(2), 87-93.
  • Hansen, V., Müller-Stöver, D., Imparato, V., Krogh, P. H., Jensen, L. S., Dolmer, A., & Hauggaard-Nielsen, H. (2017). The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study. Journal of Environmental Management, 186, 88-95.
  • Hay, R. K. M., (1995). Harvest index: a review of its use in plant breeding and crop physiology. Annals of applied biology, 126(1), 197-216.
  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., ... & Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Soil Research, 48(7), 501-515.
  • Kacar, B., Katkat, V., 2010. Bitki Besleme. (5. Baskı) Nobel Yayın Dağıtım.
  • Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium. Sodium and Potassium. Methods of Soil Analysis. Part 2. The G.W. (1982). Exchangeable Cations. pp. 159-l65. Chemical and Microbiological Properties. Agronomy Monograph No.9 (2 nd Ed). ASA-SSSA. Madison. Wisconsin. USA.
  • Kobata, T., Koç, M., Barutçular, C., Tanno, K. I., & Inagaki, M. (2018). Harvest index is a critical factor influencing the grain yield of diverse wheat species under rain-fed conditions in the Mediterranean zone of southeastern Turkey and northern Syria. Plant Production Science, 21(2), 71-82.
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil biology and biochemistry, 43(9), 1812-1836.
  • Lindsay, W. L., & Norwell, W. A. (1978). Departmentof a DTPA soil test for zinc, iron and manganese andcopper. Soil Science Society of America Journal, 42, 421-428.
  • Liu, C., Sun, B., Zhang, X., Liu, X., Drosos, M., Li, L., & Pan, G. (2021). The water-soluble pool in biochar dominates maize plant growth promotion under biochar amendment. Journal of Plant Growth Regulation, 40(4), 1466-1476.
  • Major, J. (2009). Biochar Application To A Colombian Savanna Oxisol: Fate And Effect On Soil Fertility, Crop Production, Nutrient Leaching And Soil Hydrology Volume I.
  • Namlı, A., Akça, M. O., & Akça, H. (2017). Tarımsal atıklardan elde edilen biyokömürün buğday bitkisinin gelişimi ve bazı toprak özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1), 39-47.
  • Nelissen, V., Rütting, T., Huygens, D., Staelens, J., Ruysschaert, G., & Boeckx, P. (2012). Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry, 55, 20-27.
  • Olmo, M., Alburquerque, J. A., Barrón, V., Del Campillo, M. C., Gallardo, A., Fuentes, M., & Villar, R. (2014). Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 50(8), 1177-1187.
  • Olsen, S.R., Cole, C.V., Watanabe, F.S., & Dean, L.A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US. Dept. Agric. Cric. p. 939.
  • Peng, J., Han, X., Li, N., Chen, K., Yang, J., Zhan, X., ... & Liu, N. (2021). Combined application of biochar with fertilizer promotes nitrogen uptake in maize by increasing nitrogen retention in soil. Biochar, 3(3), 367-379.
  • Rivera-Amado, C., Trujillo-Negrellos, E., Molero, G., Reynolds, M. P., Sylvester-Bradley, R., & Foulkes, M. J. (2019). Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Research, 240, 154-167.
  • Singh, I. D., & Stoskopf, N. C. (1971). Harvest index in cereals 1. Agronomy Journal, 63(2), 224-226.
  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.