Basra Petrol Sahasındaki Atık Toprak-Yağ Karışımının Doğal Radyonüklid İçeriği ve Radyolojik Tehlike Seviyeleri

Özellikle taş, toprak, kaya gibi çevresel örneklerin doğal yapılarında farklı miktarlarda doğal radyonüklidler bulunmaktadır. Buçevresel örneklerin doğal radyoaktivite seviyelerinin belirlenmesi çevrenin korunması ve insan sağlığı açısından önemlidir. Buçalışmada, Basra petrol sahasındaki atık olarak ortaya çıkan yağla karışmış olan toprak örneklerinde Uranyum-238, Toryum-232 vepotasyum-40 doğal radyonüklidlerin aktivite konsantrasyonları ölçülmüştür. Bu ölçümler Süleyman Demirel Üniversitesi FizikBölümünde bulunan NaI(Tl) dedektörlü gama ışını spektrometresi kullanılarak yapılmıştır. Ölçülen aktivite konsantrasyonlarıkullanılarak, özellikle bu alanlarda çalışan işçilerin maruz kalacağı radyolojik tehlike seviyeleri belirlenmiştir. Elde edilen tümsonuçlar tavsiye edilen limit değerler ile karşılaştırılmıştır.

Natural radionuclide content and radiological hazard levels of waste soil-oil mixture in the Basra oil field

There are different amounts of natural radionuclides in the natural structures of environmental samples such as stone, soil and rock. Determining the natural radioactivity levels of these environmental samples is important for the protection of the environment and human health. In this study, the activity concentrations of Uranium-238, Thorium-232 and potassium-40 natural radionuclides were measured in soil samples mixed with oil that emerged as waste in the Basra oil field. These measurements were made using NaI (Tl) detector gamma ray spectrometry in Süleyman Demirel University Physics Department. Using the measured activity concentrations, the levels of radiological hazards to which especially workers working in these areas will be exposed were determined. All results obtained were compared with the recommended limit values.

___

  • [1]. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Sources and Effects of Ionizing Radiation, Vol. I: Sources. United Nations Publication, New York, 654s.
  • [2]. Günoğlu, K., Assessment of lifetime cancer risk due to natural radioactivity in the stones in the Central Anatolia Region, Turkey, Arabian Journal of Geosciences 11: 503, 1-6, 2018
  • [3]. Al-Masri M. S., Aba, A., Distribution NORM in different oil fields equipment, Appli. Radi. And Isotopes, 63, 4, 457-463, 2005
  • [4]. İskender A, Ayten Uyanık N, Günoğlu K (2015) Radiation dose estimation: an in vitro measurement for Isparta-Turkey. Int J. Computational Experimental Sci Engineering (IJCESEN) 1-1:1–4
  • [5]. B. Canbaz, N Füsun Çam, G. Yaprak, O. Candan, 2010. Natural radioactivity (226Ra, 232Th and40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey, Radiat. Prot. Dosim.141, 192
  • [6]. Myatt TA, Allen JG, Minegishi T, McCarthy WB, Mac-Intosh DL, McCarthy JF (2010) Assessing exposure to granite countertops— part 1: radiation. J Expo Sci Environ Epidemiol 20:280
  • [7]. Akkurt I. and Gunoglu, K., 2014. Natural radioactivitymeasurements and radiation dose estimation in some sedimentary rock samples in Turkey. Science and Technology of Nuclear Installations Volume 2014, Article ID 950978
  • [8]. Yii M, Zaharudin A, Abdul-Kadir I (2009) Distribution of naturally occurring radionuclides activity concentration in East Malaysian marine sediment. Appl Radiat Isot 67(4):630–635
  • [9]. Abo-Elmagd M., Soliman H.A., Salman Kh.A., El-Masry N.M., (2010). Radiological hazards of TENORM in the wasted petroleum pipes, J. Envron. Radio. 101, 51-54.
  • [10]. Kadyrzhanov K.K, Tuleushev A.Z, Marabaev Z.N (2005). Radioactive components of scales at the inner surface of pipes in oil fields of Kazakhstan. J Radioanal Nucl Chem 264:413–416.
  • [11]. Hamlat M.S., Djeffal S., Kadi H. (2001). Assessment of radiation exposures from naturally occurring radioactive materials in the oil and gas industry. Applied Radiation and Isotopes 55, 141–146.
  • [12]. Omar M, Ali HM, Abu MP (2004) Distribution of radium in oil and gas industry wastes from Malaysia. Appl.Radiat Isot 60:779–782.
  • [13]. Godoy, J.M., Crux, R.P. (2003). 226Ra and 228Ra in scale and sludge samples and their correlation with the chemical composition. Journal of Environmental Radioactivity 70, 199-206.
  • [14]. Günay, O. et al. (2019). Natural radioactivity analysis of soil samples from Ganos fault (GF). International Journal of Environmental Science and Technology, 2019, 16.9: 5055-5058.
  • [15]. Günay, O. (2018). Assessment of lifetime cancer risk from natural radioactivity levels in Kadikoy and Uskudar District of Istanbul. Arabian Journal of Geosciences, 11(24), 782.
  • [16]. Günay, O., & Eke, C. (2019). Determination of terrestrial radiation level and radiological parameters of soil samples from Sariyer-Istanbul in Turkey. Arabian Journal of Geosciences, 12(20), 631.
  • [17]. Akkurt, I., Gunoglu, K., & Arda, S. S. 2014. Detection efficiency of NaI (Tl) detector in 511–1332 keV energy range. Science and Technology of Nuclear Installations, 2014.
  • [18]. Beretka J, Mathew PJ 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95
  • [19]. NEA-OECD, 1979. Exposure to Radiation from Natural Radioactivity in Building Materials. Report by NEA Group of Experts of the Nuclear Energy Agency. OECD, Paris, France.