Bant Çentik Karakteristiği Gösteren Ultra Geniş Bant Mikroşerit Anten Tasarımları Üzerine Bir İnceleme

Ultra Geniş Bant (UGB) teknolojisi özellikle kısa mesafeli iletişimlerde, çok düşük enerji seviyelerinde çalışabilen bir radyo teknolojisidir. Bu teknoloji sayesinde, dijital verilerin oldukça düşük enerji seviyelerinde ve yüksek veri hızlarında geniş bir frekans spektrumu üzerinden iletilmesi sağlanmaktadır. UGB teknolojisinin kablosuz sistemlerde kullanımı için 3.1-10.6 GHz frekans bandı, Federal İletişim Komisyonu (FİK) tarafından tanımlanmıştır ve bu frekans aralığında; WiMAX (3.3-3.7 GHz), WLAN (5.15-5.85 GHz), C-bant (3.8-4.2 GHz) ve X-bant (7.25-7.75 ve 7.9-8.4 GHz) gibi birçok dar bantlı iletişim sistemi yer almaktadır. UGB teknolojisinin, dijital iç mekân ve ev ağları uygulamaları için veri iletiminin düşük maliyetli ve yüksek hızlı olarak gerçekleştirmesi gibi avantajlarının yanında, 3.1-10.6 GHz frekans bandında yer alan dar bantlı iletişim sistemlerinden kaynaklanan elektromanyetik parazitlenme gibi bir dezavantajı bulunmaktadır. İletişim kalitesini arttırmak ve istenmeyen sinyalleri engellemek için mikrodalga filtreler kullanılabilir ancak bu yöntem sistemin maliyetini ve hacmini arttırdığı gibi kayıplara da neden olmaktadır. Bu nedenle, literatürde mevcut bantlardan kaynaklanan potansiyel parazitlenmeyi önlemek için bant reddetme özelliklerine sahip UGB antenlerinin tasarımı üzerine çok sayıda araştırma bulunmaktadır. Literatürdeki çalışmalar incelendiğinde, parazit sorunlarını önlemek için farklı yaklaşımlar kullanan, bant çentik karakteristiği gösteren birçok UGB anten geliştirildiği görülmüştür. Bu çalışmalarda; yama ve toprak düzleminde yarıklar kullanma, besleme hattı veya toprak düzleminde saplamalar kullanma, parazitik şerit kullanma, Elektromanyetik Bant Boşluğu (EBB) yapıları kullanma ve Yarık Halka Rezonatör (YHR) kullanma gibi tekniklerin tercih edildiği ve bu teknikler sayesinde de WiMAX, WLAN, X-bant ve C-bant frekans bantlarında bant çentik karakteristiği gösteren mikroşerit anten tasarlandığı gözlenmiştir. Bu bildiri kapsamında, UGB bandında çalışan ve bant çentik karakteristiği gösteren, literatürde yer almış mikroşerit anten çalışmalarının derlemesi sunulmuştur. Yapılan derleme sonucunda, kullanılan çeşitli teknikler sayesinde hem dar bantlı iletişim sistemlerinde bant çentik karakteristiği sağlandığı, hem de kazanç, bant genişliği ve geri dönüş kaygı gibi performans parametrelerinde de farklı sonuçlar elde edildiği görülmüştür.
Anahtar Kelimeler:

UGB, Bant Çentik, WiMAX, WLAN, X-bant

Ultra Wideband Microstrip Antenna Designs Showing Band-Notch Characteristic: A Review

Ultra Wide Band (UWB) is a radio technology that can operate at a very low energy level especially in short distance communication. By means of this technology, digital data are transmitted through a wide frequency spectrum in very low energy and high data speed. 3.1-10.6 GHz frequency band was identified in order that uses UWB technology in wireless systems by Federal Communication Commission (FCC) and there are many narrowband communication systems like WiMAX (3.3-3.7 GHz), WLAN (5.15-5.85 GHz), C- band (3.8-4.2 GHz) ve X-band (7.25-7.75 and 7.9-8.4 GHz) in this frequency band. Apart from the advantages of UWB systems like realise low cost and very speed digital indoor and home network applications has a disadvantage known as electromagnetic interference due to narrowband communication systems that situate in the 3.1-10.6 GHz frequency band. In order to increase the communication quality, filters can be used, however, this method increases the cost and size of the system. Also, it causes losses in communication. Therefore, there is a lot of research in the literature about UWB antenna designs that have a band-notched characteristic in order that block potential interference stemming from a narrowband communication system. According to works in the literature, in order to achieve band-notched characteristic, researchers usually have prefered like technics using the slot on the patch or ground plane, parasitic strip, Electromagnetic Band Gap (EBG) structure, stub and Split Ring Resonator (SRR) structure. In this letter, it is presented the review of microstrip antennas that operate in the UWB frequency band (3.1-10.6 GHz) and show band-notched characteristic in the narrowband communication system. As a result, by means of using these different technics in the literature, both band-notched characteristic in the different narrowband frequency band like WiMAX, WLAN, X-band, C-band and different results has been achieved in the performance parameters like gain, bandwidth, return loss.

___

  • Balanis, C. A. (2016). Antenna theory: analysis and design. John wiley & sons.
  • FC Commission. (2002). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. First report and order, 02-48.
  • Oppermann, I., Hämäläinen, M., & Iinatti, J. (Eds.). (2005). UWB: theory and applications. John Wiley & Sons.
  • Mohammed, H. J., Abdullah, A. S., Ali, R. S., Abd-Alhameed, R. A., Abdulraheem, Y. I., & Noras, J. M. (2016). Design of a uniplanar printed triple band-rejected ultra-wideband antenna using particle swarm optimisation and the firefly algorithm. IET Microwaves, Antennas & Propagation, 10(1), 31-37.
  • Murugan, N. A., Balasubramanian, R., & Patnam, H. R. (2016). Printed ultra-wideband monopole U-slotted antenna for triple band-rejection. Journal of ElEctromagnEtic WavEs and applications, 30(12), 1532-1544.
  • Mewara, H. S., Deegwal, J. K., & Sharma, M. M. (2018). A slot resonators based quintuple band-notched Y-shaped planar monopole ultra-wideband antenna. AEU-International Journal of Electronics and Communications, 83, 470-478.
  • Hosseini, H., Hassani, H. R., & Amini, M. H. (2018). Miniaturised multiple notched omnidirectional UWB monopole antenna. Electronics Letters, 54(8), 472-474.
  • Jiang, W., & Che, W. (2012). A novel UWB antenna with dual notched bands for WiMAX and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 11, 293-296.
  • Wang, J., Yin, Y., Liu, X., & Wang, T. (2013). Trapezoid UWB antenna with dual band-notched characteristics for WiMAX/WLAN bands. Electronics Letters, 49(11), 685-686.
  • Liu, X. L., Yin, Y. Z., Liu, P. A., Wang, J. H., & Xu, B. (2013). A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches. Progress In Electromagnetics Research, 136, 623-634.
  • Zhang, K., Li, Y., & Long, Y. (2010). Band-notched UWB printed monopole antenna with a novel segmented circular patch. IEEE Antennas and Wireless Propagation Letters, 9, 1209-1212.
  • Yazdi, M., & Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure. IEEE Antennas and Wireless Propagation Letters, 10, 170-173.
  • Peng, L., & Ruan, C. L. (2013). Design and time-domain analysis of compact multi-band-notched UWB antennas with EBG structures. Progress In Electromagnetics Research, 47, 339-357.
  • Modak, S., Khan, T., & Laskar, R. H. (2020). Penta-notched UWB monopole antenna using EBG structures and fork-shaped slots. Radio Science, 55(9), 1-11.
  • Liu, J., Gong, S., Xu, Y., Zhang, X., Feng, C., & Qi, N. (2008). Compact printed ultra-wideband monopole antenna with dual band-notched characteristics. Electronics letters, 44(12), 710-711.
  • Sarkar, D., Srivastava, K. V., & Saurav, K. (2014). A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 13, 396-399.
  • Jyotshna, J. P. SRR Loaded Dual Band Notched Ultra Wideband Microstrip Antenna.
  • Naghar, A., Falcone, F., Alejos, A., Aghzout, O., & Alvarez, D. (2016). A Simple UWB Tapered Monopole Antenna with Dual Wideband-Notched Performance by Using Single SRR-Slot and Single SRR-Shaped Conductor-Backed Plane. Applied Computational Electromagnetics Society Journal, 31(9).
  • Tsai, L. C., & Chen, W. J. (2016). A UWB antenna with band‐notched filters using slot‐type split ring resonators. Microwave and Optical Technology Letters, 58(11), 2595-2598.
  • Xiao, W., Mei, T., Lan, Y., Wu, Y., Xu, R., & Xu, Y. (2016). Triple band-notched UWB monopole antenna on ultra-thin liquid crystal polymer based on ESCSRR. Electronics Letters, 53(2), 57-58.
  • Yadav, A., Agrawal, S., & Yadav, R. P. (2017). SRR and S-shape slot loaded triple band notched UWB antenna. AEU-International Journal of Electronics and Communications, 79, 192-198.
  • Shaik, L. A., Saha, C., Antar, Y. M., & Siddiqui, J. Y. (2018). An antenna advance for cognitive radio: Introducing a multilayered split ring resonator-loaded printed ultrawideband antenna with multifunctional characteristics. IEEE Antennas and Propagation Magazine, 60(2), 20-33.
  • Yadav, A., Sharma, M. D., & Yadav, R. P. (2019). A CPW-fed CSRR and inverted U slot loaded triple band notched UWB antenna. Progress In Electromagnetics Research, 89, 221-231.
  • Hassain, Z. A. A., Ali, M. M., & AZEE, A. (2019). Single and Dual Band-Notch UWB Antenna Using SRR/CSRR Resonator. Journal of Communications, 14(6), 504-510.
  • Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S., & Tiwari, R. (2018). Compact ultra-wideband microstrip antenna with dual polarisation/multi-notch characteristics. IET Microwaves, Antennas & Propagation, 12(9), 1546-1553.
  • Tang, Z., Wu, X., Zhan, J., Hu, S., Xi, Z., & Liu, Y. (2019). Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics. IEEE Access, 7, 19856-19865.
  • Rekha, V. S. D., Pardhasaradhi, P., Madhav, B. T. P., & Devi, Y. U. (2020). Dual Band Notched Orthogonal 4-Element MIMO Antenna With Isolation for UWB Applications. IEEE Access, 8, 145871-145880.