Bakır ve Çinko Uygulamasının Karabuğday (Fagopyrum esculentum Moench.)’ın Bazı Ekofizyolojik Özellikleri Üzerine Etkisi

Mikro besin elementlerinin toprakta optimum seviyeden daha yüksek ya da daha düşük miktarlarda bulunması abiyotik stresoluşumunda oldukça etkilidir. Mikro besin elementleri arasında yer alan bakır ve çinko metali bitkilerde birçok metabolik vebiyokimyasal olayda rol oynadığından bitki yaşamında oldukça önemli bir role sahiptir.Bu çalışmada; materyal olarak son yıllarda gıda endüstrisinde yüksek potansiyele sahip bir ürün haline gelen Fagopyrum esculentumMoench. türü seçilmiştir. Bitki metabolizmasında, verim ve ürün kalitesinde önemli rol oynayan bakır ve çinko elementlerine ait 4 farklıkonsantrasyonun Karabuğday’a ait temel büyüme ve gelişme parametreleri olan çimlenme oranı, bitki toplam uzunluğu, kök uzunluğu,gövde çapı, yaprak sayısı, kök ve gövde biyokütlesi, bakır ve çinko tolerans indeksi ile tohum canlılık indeksi belirlenmiştir. Bakırkirliliğinin çinkonun yüksek konsantrasyonlarına nazaran bitki gelişiminin ilk evresi olan tohum çimlenmesi ve fide gelişimini olumsuzyönde etkilediği tespit edilmiştir. Ayrıca düşük konsantrasyonlardaki çinkonun tohum çimlenmesini olumlu etkilediğini ancak bakırıntohum çimlenmesini inhibe ettiği belirlenmiştir. Tohum canlılık indeksinin çinko konsantrasyonlarından etkilenmediği ancak yüksekbakır konsantrasyonlarında tohum canlılık indeksinin azaldığı tespit edilmiştir. Kök ve gövde yaş-kuru ağırlığının her iki metalde deartan konsatrasyonlarda azaldığı, bakır uygulamasında kök biyokütlesi sonuçlarının da buna eşlik ettiği ortaya konmuştur. Bu çalışmabakır ve çinko metallerinin bitkinin yaşamında önemli bir yeri olan erken gelişim evresindeki etkilerini ortaya koyarak önemli birekolojik sorun olan tarımsal topraklardaki kirliliğin kontrolü ile ilgili yapılacak olan çalışmalara katkı sağlayacaktır.

Effect of Copper and Zinc Application on Some Ecophysiological Properties of Buckwheat (Fagopyrum esculentum Moench.)

The presence of micro nutrients in the soil in higher or lower amounts than the optimum level is very effective in the formation of abiotic stress. As copper and zinc metal, which are among the micronutrients, play a role in many metabolic and biochemical processes in plants, they have a very important role in plant life. In this study; Fagopyrum esculentum Moench., which has become a product with high potential in the food industry in recent years, was chosen as a material. Buckwheat of 4 different concentrations of copper and zinc elements, which play an important role in plant metabolism, yield and product quality . the type of germination the basic growth and development parameters for the ratio of the total length of the plants, root length, stem diameter, number of leaves, root and shoot biomass was determined seed viability index on copper and zinc tolerance index. It has been determined that copper pollution negatively affects seed germination and seedling development, which is the first phase of plant development compared to high concentrations of zinc . In addition it has been determined that low concentrations of zinc affect seed germination but copper inhibits seed germination . It was determined that seed viability index is not affected by zinc concentrations , but seed viability index decreases in high copper concentrations. It has been demonstrated that root and stem wet-dry weight decreases with increasing concentrations in both metals and root biomass results accompany this in copper application . This study will contribute to the studies on the control of pollution in agricultural soils, which is an important ecological problem, by revealing the effects of copper and zinc metals in the early development phase, which has an important place in the life of the plant.

___

  • Adrees M., Ali S., Rizwan M., Ibrahim M., Abbas F., Farid M., Zia-ur-Rehman M., Irshad M.K., Bharwana S.A. (2015) The effect of excess copper on growth and physiology of important food crops: a review, Environ Sci Pollut Res, 22: 8148–8162.
  • Afrayeem S.M., Chaurasia A. (2017) Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.), Journal of Pharmacognosy and Phytochemistry, 6(5): 1564-1566.
  • Ahmed A., Khalıd N., Ahmad A., Abbası N.A., Latıf M.S.Z., Randhawa M.A. (2014) Phytochemicals and biofunctional properties of buckwheat: a review, Journal of Agricultural Science, 152: 349–369.
  • Aliyas I.B., Kassim G.Y., Mutlak N.N. (2015) Evaluation Some Germination Characteristics for Buckwheat Seeds Under Experimental Ecology Conditions, International Journal of Scientific and Research Publications, 5(11): 634-638.
  • Al-Snafi A.E., (2017) A review on Fagopyrum esculentum: A potential medicinal plant, IOSR Journal of Pharmacy, 7(3):21-32.
  • Bhaduri N.P., Prajneshu M., Gaur M., Suri S. (2016) Seed germination behaviour and preliminary screening of bioactive components in buckwheat (Fagopyrum spp.), DU Journal of Undergraduate Research and Innovation 2(1): 121-130.
  • Brajdes C., Vizireanu C. (2012) Sprouted buckwheat an important vegetable source of antioxidants, The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology ,36(1) 53-60.
  • Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. (2007) Zinc in plants, New Phytologist, 173: 677–702.
  • Cakmak I., Kutman U.B. (2018) Agronomic biofortification of cereals with zinc: a review, European Journal of Soil Science, 69: 172– 180.
  • Campbell, C.G. (1997). Buckwheat Fagopyrum esculentum Moench. Promoting the Conservation and Use of Underutilized and Neglected Crops 19. Rome, Italy: Institute of Plant Genetics and Crop Plant Research; Gatersleben/International Plant Genetic Resources Institute.
  • Da Costa M.V.J., Sharma P.K. (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa, Photosynthetica, 54: 110–119.
  • El-Ghamery A.A., El-Kholy M.A., El-Yousser A. (2003) Evaluation of cytological effects of Zn+2 in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L., Mutation Research, 537: 29-41.
  • Gonçalves F.M.F., Debiage R.R., Gonçalves da Silva R.M., Porto P.P., Yoshihara E., Peixoto E.C.M.T. (2016) Fagopyrum esculentum Moench: A crop with many purposes in agriculture and human nutrition, African Journal of Agricultural Research, 11(12): 983- 989.
  • Gondola I., Papp P.P. (2010) Origin, Geographical Distribution and Phylogenic Relationships of common Buckweat (Fagophyrum esculenthum Moench.), The European Journal of Plant Science and Biotechnology, 4(Special Issue 1): 17-32.
  • Gupta S., Meena M.K., Datta S. (2016) Effect of selected heavy metals (lead and zinc) on seedling growth of soybean Glycine max (L.) Merr., International Journal of Pharmacy and Pharmaceutical Sciences, 8(8): 302-305.
  • Heffler E., Pizzimenti S., Badiu I., Guida G., Rolla G. (2014) Buckwheat allergy: an emerging clinical problem in Europe, J. Allergy Ther. 5: 168.
  • Hussain I., Bano A., Faizanullah, Nosheen A. (2016) Multivariate analysis for elemental composition among indigenous common buckwheat genotypes of Baltistan, The Journal of Animal and Plant Sciences, 26(6): 1725-1731.
  • Iqbal M.Z., Habiba U., Nayab S., Shafiq M. (2018) Effects of copper on seed germination and seedling growth performance of Lens culinaris Medik., Journal of Plant Development, 25: 85-90.
  • Jabeen, N., Ahmad, R. (2012) Improvement in growth and leaf water relation parameters of Sunflower and Safflower plants with foliar application of nutrient solutions under salt stress, Pak. J. Bot., 44(4):1341-1345.
  • Kunjam M., Govada H., Mididoddi N., Kota R.S.L.N. (2015) Studies on selected heavy metals on seed germination and plant growth in pea plant (Pisum sativum) grown in solid medium, Journal of Pharmacognosy and Phytochemistry, 3(5): 85-87.
  • Lin S.L., Wu L. (1994) Effects of copper concentration on mineral nutrient uptake and copper accumulation in protein of copper-tolerant and nontolerant Lotus purshianus L., Ecotoxicology and Environmental Safety, 29(2): 214-228.
  • Mishra M., Jain S. (2019) A Comparative Study on Nutritional Profile and Antinutrients of Buckwheat Fractions (Fagopyrum esculentum), International Journal of Current Microbiology and Applied Sciences , 8(3): 3384-3393
  • Naeem M., Ansari A.A., Gill S.S. (2017) Essential Plant Nutrients Uptake, Use Efficiency, and Management, 1st ed., Springer, 569 p.
  • Okcu M., Tozlu E., Kumlay A.M., Pehluvan M. (2009) Ağır Metallerin Bitkiler Üzerine Etkileri, Alınteri, 17(B), 14-26.
  • Pandey R. (2015) Mineral Nutrition of Plants, Indian Agricultural Research Institute, New Delhi, India.
  • Rahmani F., Peymani A., Daneshvand E., Biparva P. (2016) Impact of zinc oxide and copper oxide nano-particles on physiological and molecular processes in Brassica napus L., Ind J Plant Physiol, 21: 122–128.
  • Rajput V.D., Minkina T., Suskova S., Mandzhieva S., Tsitsuashvili V., Chapligin V., Fedorenko A. (2017) Effects of copper nanoparticles (CuO NPs) on crop plants: a Mini Review, BioNanoScience, 8(1), 36–42.
  • Reichman S.M. (2012) The Responses of Plants to Metal Toxicity: A review focusing on Copper, Manganese and Zinc, Australian Minerals and Energy Environment Foundation, Melbourne, Victoria.
  • Sadeghzadeh B. (2013) A review of zinc nutrition and plant breeding, Journal of Soil Science and Plant Nutrition, 13 (4): 905-927.
  • Shaikh I.R., Shaikh P.R., Shaikh R.A., Shaikh A.A. (2013). Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India.
  • Shams M.K., Yıldırım E., Agar G., Ercisli S., Ekinci M.,Dursun A., Kul R. (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L., Not Bot Horti Agrobo, 46(1): 167-172.
  • Singh D., Nath K., Sharma Y.K. (2007) Response of wheat seed germination and seedling growth under copper stress, J. Environ. Biol., 28(2), 409-414.
  • Tomar O., Kumlay A.M., Çağlar A. (2008) Antioksidan ve Flavonoid Kaynağı Olarak Karabuğday (Fagopyrum esculentum Moench), Hasad Gıda, 23(274): 44-49.
  • Tripathi D.K., Singh S., Singh S., Mishra S., Chauhan D.K., Dubey N.K. (2015) Micronutrients and their diverse role in agricultural crops: advances and future prospective, Acta Physiol Plant, 37: 139.
  • Tsonev T., Lidon F.J.C. (2012) Zinc in plants - An overview, Emir J. Food Agric, 24 (4): 322-333.
  • Unal H., Izli G., Izli N., Asik B.B. (2017) Comparison of some physical and chemical characteristics of buckwheat (Fagopyrum esculentum Moench) grains, Cyta – Journal of Food, 15(2): 257–265.
  • Vojtíšková P., Kmentová P.K., Kubáň V., Kráčmar S. (2012) Chemical composition of buckwheat plant (Fagopyrum esculentum) and selected buckwheat products, Journal of Microbiology, Biotechnology and Food Sciences, 1 (February Special Issue), 1011-1019.
  • Wang H., Zhong G., Shi G., Pan F. (2010) Toxicity of Cu, Pb, and Zn on seed germination and young seedlings of wheat (Triticum aestivum L.), 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Nanchang, China, pp.231-240.
  • Wang L.J., Sheng M.Y., Wen P.C., Du J.Y. (2017) Morphological, hysiological, cytological and phytochemical studies in diploid and colchicine‑induced tetraploid plants of Fagopyrum tataricum (L.) Gaertn, Botanical Studies, 58:2
  • White P.J., Brown P.H. (2010) Plant nutrition for sustainable development and global health, Annals of Botany, 105: 1073–1080.
  • Yashimoto Y., Egashira T., Hanashiro I., Ohinata H., Takase Y., Takeda Y. (2004) Molecular structure and some physicochemical properties of buckwheat starches, Creal Chem, 81(4): 515-520.
  • Yasmeen F., Razzaq A., Iqbal M.N., Jhanzab H.M. (2015) Effect of silver, copper and iron nanoparticles on wheat germination, International Journal of Biosciences, 6(4): 112-117.
  • Zhang R., Zhang H., Tu C., Hu X., Li L., Luo Y., Christie P. (2015) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination, Environmental Science and Pollution Research, 22(14): 11109-11117.