Atkestanesi (Aesculus hippocastanum) TohumundaIslatmaveOtoklavEtmeninBesinMaddeKompozisyonuÜze rineEtkileri

Bu çalışmada atkestanesi (Aesculus hippocastanum) tohumunun besin madde kompozisyonunu belirlemek ve yapılan bazı önişlemlerin besin maddelerine etkisini belirlemek amacıyla yapılmıştır. Bu amaçla çalışma atkestanesi tohumunun 1) ham hali, 2) soğuk suda 24 saat ıslatılması ve 3) 121 °C’de 60 dk otoklav edilmesi şeklinde 3 gruba ayrılmıştır. Elde edilen gruplar daha sonra kabuklu ve kabuksuz olarak iki grup altında analiz edilmiştir. Elde edilen veriler general lineer modelde (GLM) analiz edilmiştir. Sonuç olarak atkestanesi tohumunda uygulanan işlemlerin kuru madde (KM), ham protein (HP), ham yağ (HY), ham kül (HK), selüloz fraksiyonları ve metabolik enerji değerlerine etkisi önemsiz bulunurken, tanen oranı otoklav edilen grupta önemli derecede azalmıştır. Atkestanesi tohumu kabuklu ve kabuksuz olarak karşılaştırıldığında; KM, HP, HY ve HK oranı değişmezken, kabuksuz atkestanesinde nişasta oranı artmış, ADF, NDF ve hemiselüloz oranı azalmıştır. Tanen oranı ise kabuksuz atkestanesinde önemli derecede daha düşük bulunmuştur. Ayrıca ham atkestanesinin mineral madde içerikleri: P, K, Ca, Na, Cl, Si, Al, Ni,Cr, Rb, Zn, Fe, Mg ve S sırasıyla; %0.257, %1.106, %0.27, %0.146, %0.061, %0.055,%0.023, %0.016, %0.005, %0.003, %0.006, %0.08, %0.056 ve %0.117 olarak bulunmuştur. Sonuç olarak uygulanan teknolojik işlemlerin tanen içeriğinin azaltılmasında etkili olduğu veya tanen içeriğinin azaltılması amacıyla kabuksuz olarak da kullanılabileceği belirlenmiştir.

The Effects of Soaking and Autoclaving on Chemical and Nutritional Composition of the Horse Chestnut (Aesculus hippocastanum) Seed

The aim of this study is to determine the nutrient composition of the horse chestnut (Aesculus hippocastanum) seed and to determinethe differences of these nutrients with some technological processes. For this purpose, the horse chestnut seed was divided into 3groups as 1) raw, 2) soaking in cold water for 24 hours and 3) autoclaving at 121 °C for 60 minutes. The obtained groups were thenanalyzed under two groups as shelled and unshelled. The obtained data were analyzed in general linear model (GLM). As a result, theeffect of the treatments applied on horse chestnut seed on dry matter (DM), crude protein (CP), Ether extract (EE), crude ash (CA),cellulose fractions and metabolic energy values were insignificant, while the tannin ratio decreased significantly in the autoclavedgroup. When horse chestnut seeds are compared with shell and without shell; while the content of DM, CP, EE and CA did notchange, the starch content increased, acid detergent fiber, neutral detergent fiber and hemicellulose contents decreased in the shell lesshorse chestnut seed. The tannin ratio was significantly lower in the shelled horse chestnut. In addition, as a result of mineral analysisof raw horse chestnut, P, K, Ca, Na, Cl, Si, Al, Ni, Cr, Rb, Zn, Fe, Mg and S contents were; 0.257%, 1.106%, 0.27%, 0.146%, 0.061%,0.055%, 0.023%, 0.016%, 0.005%, 0.003%, 0.006%, 0.08%, 0.056% and 0.117%, respectively. The technological processes appliedwere effective in reducing the tannins content, or can be used without shell for the purpose of reducing the tannins content.

___

  • Alderman, G. (1985). Prediction of the energy value of compound feeds. Recent advances in animal nutrition, 1985, 3-52.
  • AOAC. (2005). Official Method 922.02, Plants Preparation of Laboratory Sample, in Horwitz, W., Latimer, G.W. (Eds.): Official Methods of Analysis. 18th edn. Chapter 3, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA, pp.1-2.
  • AOAC. (1989). Association of Official Analytical Chemists (A.O.A.C). Official Methods of Analysis, 15th ed., Vol. 1. AOAC, Washington, DC.
  • Chakraborthy, G. S. (2009). Evaluation of Immunomodulatory action/activity of Aesculus indica. International Journal of Pharma Technological Research, 1, 132-134.
  • Dearing, M. D. (1997). Effects of Acomastylisrossii tannins on a mammalian herbivore, the North Americanpika, Ochotonaprinceps. Oecologia, 109, 122-131.
  • Duhan, N., Saroj K. & Bishnoi, A. (2001). Saponin content and trypsin inhibitor activity in processed and cooked pigeon pea cultivars. International Journal of Food Sciences and Nutrition, 52(1), 53-59.
  • European Economic Community. 1972. Determination of starch. Polarimetric method. Official Journal ofEuropean Communities, Brussels, Belgium. p. 6.
  • Gershenzon, J. & Croteau, R. (1991). Terpenoids. In: Herbivores; Their Interaction with Secondary Plant Metabolites (eds G. A. Rosenthal& M. R. Berenbaum) pp. 165–220. Academic Press Inc., San Diego, California.
  • Goering, H. K. & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications). USDA Agr Handbook.
  • Gurumoorthi, P. & Uma, S. (2011). Heat-stable and heat-labile antinutritional profile in Mucunapruriens var utilis: effected bygermination. International Food Research Journal, 18(4), 1421–1426.
  • Francis, G., Makkar, H. P. & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227.
  • Kaur, L., Joseph, L. & George, M. (2011). Phytochemical analysis of leaf extract of Aesculus indica. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 232-234.
  • Kaur, S., Sharma, S., Dar, B. N. & Singh, B. (2012). Optimization of process for reduction of antinutritional factors in edible cereal brans. Food Science and Technology International, 18(5), 445-454.
  • Makkar, H. P. S., Blummel, M. & Becker, K. (1995). Formation of complexes betweenpolyvinyl pyrrolidones or polyethylene glycols and their implication ingas production and true digestibility in vitro techniques. British Journal of Nutrition, 73,897-913.
  • Mishra, M. L., Sood, S. & Shukla, U. N. (2018). Phyto-nutritional and mineral composition of Indian Horse Chestnut (Aesculus indica) seeds. Journal of Pharmacognosy and Phytochemistry, 7(1), 2159-2162.
  • Pashwar, F. (2005). Anti-nutritional factors in oil seeds as aflatoxin in ground nut. Digitalverlag GmbH, 1-8.
  • Parmar, C. & Kaushal, M. K. (1982).Aesculus indica. Wild fruits, Kalyani Publishers, New Delhi, India.
  • Rafiq, S. I., Singh, S. & Saxena, D. C. (2016). Physical, physicochemical and anti-nutritional properties of Horse Chestnut (Aesculus indica) seed. Journal of Food Measurement and Characterization, 10(2), 302-310.
  • Rajasekaran, A. & Singh, J. (2009). Ethnobotany of Indian horse chestnut (Aesculus indica) in Mandi district, Himachal Pradesh. Indian Journal of Traditional Knowledge, 8, 285-286.
  • Shah, U., Gani, A., Ashwar, B. A., Shah, A., Wani, I. A. & Masoodi, F. A. (2016). Effect of infrared and microwave radiations on properties of Indian Horse Chestnut starch. International Journal of Biological Macro Molecules, 84, 166-173.
  • Sharma, A. & Sehgal, S. (1992). Effect of processing and cooking on the antinutritional factors of faba bean (Viciafaba). Food Chemistry, 43(5), 383-385.
  • Sharma, P., Kaur, A. & Kaur, S. (2017). Nutritional quality of flours from guar bean (Cyamopsistetragonoloba) varieties as affected by different processing methods. Journal of Food Science and Technology, 54(7), 1866-1872.
  • Shimada, T. (2001). Nutrient compositions of acorns and horse chestnuts in relation to seed-hoarding. Ecological Research, 16(4), 803-808.
  • Shimelis, E., Meaza, M. & Rakshit, S. (2007). Physico-chemical properties, pasting behavior and functional characteristics of flours andstarches from improved bean (Phaseolus vulgaris L.) varietiesgrown in East Africa. Agricultural Engineering International CIGR E-J 8, 5–15.
  • Syed, I. R., Sukhcharn, S. & Saxena, D. C. (2016). Evaluation of physical and compositional properties of horse-chestnut (Aesculus indica) seed. Journal of Food Processing and Technology, 7(3).
  • Tabke, M. C., Sarturi, J. O., Galyean, M. L., Trojan, S. J., Brooks, J. C., Johnson, B. J. & Thompson, A. J. (2017). Effects of tannic acid on growth performance, carcass characteristics, digestibility, nitrogen volatilization, and meat lipid oxidation of steers fed steam-flaked corn–based finishing diets. Journal of Animal Science, 95(11), 5124-5136.
  • Van Soest, P. J., Robertson, J. D. & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.