Anatomi eğitiminde mobil öğrenmenin öğrencilerin öğrenme becerileri ve motivasyonuna etkisi: sistematik derleme

Anatomik yapıların anlaşılmasını kolaylaştıran teknolojiler, klasik yöntemlere kıyasla öğrenciler için avantajlıdır. Mobil öğrenme ve 3D görselleştirme yöntemlerinin öğrencilerin algı, memnuniyet ve kullanılabilirlikleri açısından oldukça faydalı olduğu bilinmektedir. Bu sistematik derlemenin genel amacı; anatomi eğitiminde mobil öğrenmenin etkilerini araştıran çalışmaları değerlendirmektir. Araştırmada Google Scholar, MEDLINE, PubMed ve Web of Science gibi elektronik veri tabanları kullanıldı. Anatomi eğitiminde mobil uygulama kullanımı 2013’den sonraki yayınlanan taramalar incelendi. ‘anatomy education’ ve ‘mobile learning’ anahtar kelimeler kullanılarak, anatomi eğitiminde kullanılan mobil uygulamalar hakkında bilgi içeren araştırma çalışmaları analiz edildi. Araştırmaya 10 Ocak ve 29 Mart 2022 tarihleri arasındaki veriler toplandı. Bu kapsamda elektronik taramalar sonucunda 12.220 makaleye ulaşılmıştır. Araştırmada uygunluk açısından 779 bilimsel yayına ulaşılmış ve bu yayınlardan 30 tanesi, çalışmanın konusuyla ilişkili bulunmuş ve incelemeye alınmıştır. Sistematik inceleme kapsamında incelenen 20 (%66) çalışmada mobil öğrenmenin üç boyutlu öğrenimin kolaylaştırdığı, motive edici ve eğlenceli olduğunu ifade edilmiştir. Çalışmanın 19 (%63) tanesinde anatomi eğitiminde tıp fakültesi öğrencilerinin mobil uygulamalar ile öğrenme etkinliği araştırılmış ve öğrencilerden olumlu dönüşler alınmıştır. Fakat 6 (%20) çalışmada öğrenciler kadavra eğitimi ile öğreniminin daha kolay olduğunu, okul dışında internet erişiminin sıkıntılı olduğunu, kişisel cihazlarına programları indirmede zorlandıklarını ve programların ücretli olmasından dolayı kullanamadıklarını dile getirmişlerdir 30 çalışmanın 7 (%23) tanesini AR ile yapılan uygulamalar oluşturmaktadır. Çalışmaların 8 (%26) tanesinde mobil uygulama ile anatomi öğrenen öğrencilerde final sınav sonuçlarının geleneksel yöntem ile öğrenen öğrencilere kıyasla daha yüksek puan aldığı görülmüştür. İncelenen makaleler; sınıf içinde, laboratuvarda ve sınıf dışında anatomi eğitimi için kullanılan mobil öğrenme tekniklerinin, geleneksel öğrenme yöntemlerine göre başarıyı artırdığı ve daha motive edici olduğu göstermiştir. Mobil uygulamalardan en çok başarı AR programlarının sağladığı ve öğrenci başarısı üzerinde herhangi bir olumsuz etkisi olmadığı görülmüştür.

The effect of mobile learning in anatomy education on learning skills and motivation of students: systematic review

Technologies that facilitate the understanding of anatomical structures are advantageous for students compared to classical methods. It is known that mobile learning and 3D visualization methods are very useful in terms of students' perception, satisfaction, and usability. The general purpose of this systematic review is to evaluate the studies investigating the effects of mobile learning in anatomy education. Electronic databases such as Google Scholar, MEDLINE, PubMed, and Web of Science were used in the research. The use of mobile applications in anatomy education Scans published after 2013 was reviewed. Research studies containing information about mobile applications used in anatomy education were analyzed using the keywords 'anatomy education' and 'mobile learning'. Data were collected for the study between January 10 and March 29, 2022. In this context, 12,220 articles were reached due to electronic scans. In the research, 779 scientific publications were reached in terms of appropriateness, and 30 were found to be related to the subject of the study and were considered. In 20 (66%) studies examined within the scope of systematic review, it was stated that mobile learning facilitates three-dimensional learning and it is motivating and fun. In 19 (63%) studies, the learning activity of medical faculty students in anatomy education with mobile applications was investigated, and positive feedback was received from the students. However, in 6 (20%) studies, students stated that cadaveric education was easier, internet access outside the school was problematic, they had difficulty in downloading programs to their personal devices and they could not use the programs because they were paid. 6 (20%) of 30 studies are applications made with AR. In 8 (26%) of the studies, it was seen that the final exam results of the students who learned anatomy with mobile application got higher scores than the students who learned with the traditional method. Examined articles have shown that mobile learning techniques used for anatomy education in the classroom, in the laboratory, and outside the classroom increase success and are more motivating than traditional learning methods. It has been seen that AR programs provide the most success among mobile applications and do not negatively affect student success.

___

  • Bolatli, G., & Kizil, H. J. A. S. E. (2022). The effect of mobile learning on student success and anxiety in teaching genital system anatomy. 15(1), 155-165.
  • Bork, F., Lehner, A., Eck, U., Navab, N., Waschke, J., & Kugelmann, D. J. A. S. E. (2021). The effectiveness of collaborative augmented reality in gross anatomy teaching: A quantitative and qualitative pilot study. 14(5), 590-604.
  • Chakraborty, T. R., & Cooperstein, D. F. J. A. S. E. (2018). Exploring anatomy and physiology using iPad applications. 11(4), 336-345.
  • Chandrasekaran, R., Radzi, S., Kai, P. Z., Rajalingam, P., Rotgans, J., & Mogali, S. R. (2021). A validated instrument measuring students' perceptions on plastinated and three‐dimensional printed anatomy tools.
  • Chen, Y.-S., Kao, T.-C., & Sheu, J.-P. J. J. o. c. a. l. (2003). A mobile learning system for scaffolding bird watching learning. 19(3), 347-359.
  • Co, M., Cheung, K. Y. C., Cheung, W. S., Fok, H. M., Fong, K. H., Kwok, O. Y., . . . Tsang, M. K. J. T. S. (2021). Distance education for anatomy and surgical training–A systematic review.
  • Demirtaş, İ., Onay, T., & Günerigök, F. (2019). Anatomi eğitimi için geliştirilmiş mobil uygulamalar. 18(55), 41-49. Doi: 10.25282/ted.455806
  • Fernández-Alemán, J. L., López-González, L., González-Sequeros, O., Jayne, C., López-Jiménez, J. J., Carrillo-de-Gea, J. M., & Toval, A. (2016). An empirical study of neural network-based audience response technology in a human anatomy course for pharmacy students. 40(4), 1-12.
  • Fernández-Alemán, J. L., Lopez-Gonzalez, L., Gonzalez-Sequeros, O., Jayne, C., López-Jiménez, J. J., & Toval, A. (2016). The evaluation of i-SIDRA–a tool for intelligent feedback–in a course on the anatomy of the locomotor system. 94, 172-181.
  • Gnanasegaram, J. J., Leung, R., & Beyea, J. A. (2020). Evaluating the effectiveness of learning ear anatomy using holographic models. 49(1), 1-8.
  • Golenhofen, N., Heindl, F., Grab‐Kroll, C., Messerer, D. A., Böckers, T. M., & Böckers, A. (2020). The use of a mobile learning tool by medical students in undergraduate anatomy and its effects on assessment outcomes. 13(1), 8-18.
  • Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work?--a literature review of empirical studies on gamification. Paper presented at the 2014 47th Hawaii international conference on system sciences.
  • Harmon, D. J., Burgoon, J. M., & Kalmar, E. L. (2022). Development and assessment of an integrated anatomy mobile app. 35(5), 686-696.
  • Havens, K. L., Saulovich, N. A., & Saric, K. J. (2020). A case report about anatomy applications for a physical therapy hybrid online curriculum. 108(2), 295.
  • Jamali, S. S., Shiratuddin, M. F., Wong, K. W., Oskam, C. L. J. P.-S., & Sciences, B. (2015). Utilising mobile-augmented reality for learning human anatomy. 197, 659-668.
  • Korf, H.-W., Wicht, H., Snipes, R. L., Timmermans, J.-P., Paulsen, F., Rune, G., & Baumgart-Vogt, E. J. A. o. A.-A. A. (2008). The dissection course–necessary and indispensable for teaching anatomy to medical students. 190(1), 16-22.
  • Kumar, A., Tewari, A., Shroff, G., Chittamuru, D., Kam, M., & Canny, J. (2010). An exploratory study of unsupervised mobile learning in rural India. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
  • Kurniawan, M. H., & Witjaksono, G. J. P. C. S. (2018). Human anatomy learning systems using augmented reality on mobile application. 135, 80-88.
  • Küçük, S., Kapakin, S., & Göktaş, Y. J. A. s. e. (2016). Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. 9(5), 411-421.
  • Lazarus, L., Sookrajh, R., & Satyapal, K. (2017). Tablet technology in medical education in South Africa: a mixed methods study. 7(7), e013871. doi:10.1136/bmjopen-2016-013871
  • Liaw, S.-S., Hatala, M., & Huang, H.-M. (2010). Investigating acceptance toward mobile learning to assist individual knowledge management: Based on activity theory approach. 54(2), 446-454.
  • Liu, M., Scordino, R., Geurtz, R., Navarrete, C., Ko, Y., & Lim, M. J. J. o. r. o. T. i. E. (2014). A look at research on mobile learning in K–12 education from 2007 to the present. 46(4), 325-372.
  • Mansouri, M., Bigdeli, S., Dehnad, A., Sohrabi, Z., Alizadeh, S., & Keshavarzi, M. H. (2020). Exploring the features of mobile phone application of anatomy in basic medical sciences: a qualitative study. 20(1), 1-9.
  • Mayfield, C. H., Ohara, P. T., & O'Sullivan, P. S. J. A. s. e. (2013). Perceptions of a mobile technology on learning strategies in the anatomy laboratory. 6(2), 81-89.
  • Mendez‐Lopez, M., Juan, M. C., Molla, R., & Fidalgo, C. J. A. S. E. (2022). Evaluation of an augmented reality application for learning neuroanatomy in psychology. 15(3), 535-551.
  • Meyer, A., Stomski, N., Innes, S., & Armson, A. (2016). VARK learning preferences and mobile anatomy software application use in pre‐clinical chiropractic students. Anatomical Sciences Education, 9(3), 247-254.
  • Meyer, A. J., Stomski, N. J., Innes, S. I., & Armson, A. (2016). VARK learning preferences and mobile anatomy software application use in pre‐clinical chiropractic students. 9(3), 247-254.
  • Meyer, A. J., Stomski, N. J., Losco, C. D., Armson, A. J. J. C., & Therapies, M. (2016). The influence of anatomy app use on chiropractic students’ learning outcomes: a randomised controlled trial. 24(1), 1-5.
  • Mogali, S. R., Vallabhajosyula, R., Ng, C. H., Lim, D., Ang, E. T., & Abrahams, P. J. A. s. e. (2019). Scan and learn: Quick response code enabled museum for mobile learning of anatomy and pathology. 12(6), 664-672.
  • Moro, C., Štromberga, Z., Raikos, A., & Stirling, A. (2017). The effectiveness of virtual and augmented reality in health sciences and medical anatomy. 10(6), 549-559.
  • Morris, N. P., Lambe, J., Ciccone, J., & Swinnerton, B. J. J. o. C. A. L. (2016). Mobile technology: students perceived benefits of apps for learning neuroanatomy. 32(5), 430-442.
  • Nicholson, D., Chalk, C., Funnell, W. R. J., & Daniel, S. J. (2006). A randomized controlled study of a computer-generated three-dimensional model for teaching ear anatomy.
  • Parker, L. M. (2002). Anatomical dissection: why are we cutting it out? Dissection in undergraduate teaching. 72(12), 910-912.
  • Pickering, J. D. J. A. s. e. (2015). Anatomy drawing screencasts: Enabling flexible learning for medical students. 8(3), 249-257.
  • Raney, M. A. (2016). Dose‐and time‐dependent benefits of iPad technology in an undergraduate human anatomy course. 9(4), 367-377.
  • Rosario, M. G. (2021). The Perceived Benefit of a 3D Anatomy Application (App) in Anatomy Occupational Therapy Courses. 6(1), 8-14.
  • Seisto, A., Federley, M., Kuula, T., Paavilainen, J., Vihavainen, S. J. I. J. o. M., & Learning, B. (2011). Involving the end-users in the development of language learning material. 3(2), 43-56.
  • Stewart, S., & Choudhury, B. J. A. S. E. (2015). Mobile technology: Creation and use of an i B ook to teach the anatomy of the brachial plexus. 8(5), 429-437.
  • Stirling, A., & Birt, J. (2014). An enriched multimedia eBook application to facilitate learning of anatomy. 7(1), 19-27.
  • Sural, I. (2017). Mobile augmented reality applications in education. In Mobile technologies and augmented reality in open education (pp. 200-214): IGI Global.
  • Şahin, T., & Çavus, N. (2019). Education in the Digital Age: Technological Trends in Anatomy Education. 25(97), 31-46. Doi:10.22559/folklor.925
  • Tirkeş, G., Gökpınar, D., Arıcı, E. E., & Bayralı, A. (2021). Nöroanatomi Dersi İçin Bir Mobil Uygulama Önerisi. (26), 197-202. doi:10.31590/ejosat.950201
  • Traser, C. J., Hoffman, L. A., Seifert, M. F., & Wilson, A. B. J. A. S. E. (2015). Investigating the use of quick response codes in the gross anatomy laboratory. 8(5), 421-428.
  • Url-1. (2022). Retrieved from www.prisma-statement.org
  • Wahyudi, A. K., Mambu, J. Y., Lengkong, A. V., & Ardian, Z. (2019). Implementing augmented reality as a digital props of brain anatomy using 3d cuboid tracker. Paper presented at the 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS).
  • Wilkinson, K., & Barter, P. J. J. o. p. d. (2016). Do mobile learning devices enhance learning in higher education anatomy classrooms? , 6(1), 14-23.
  • Wilkinson, K., Dafoulas, G., Garelick, H., & Huyck, C. (2020). Are quiz‐games an effective revision tool in Anatomical Sciences for Higher Education and what do students think of them? , 51(3), 761-777.