Al2O3/Spirulina Platensis Destekli Co Katalizörü Varlığında Sodyum Borohidrürün Metanolizinden Hidrojen Üretiminin Araştırılması

Bu çalışmada, Al2O3/Spirulina Platensis mikroalg karışımı ilk kez destek maddesi olarak kullanılmıştır. Buradaki amaç yenilenebilir enerji kaynağı olan hidrojenin üretiminde kullanılan katalizörlerin etkinliğini arttıracak yeni, ekonomik ve çevreci destek maddesi olarak mikroalgin kullanılabileceğini ortaya koymaktır. Al2O3/S. Platensis destekli Co katalizörü hazırlanırken kullanılacak olan mikroalg (Spirulina Platensis) türü literatürde belirtilen kültür ortamı hazırlanarak büyütülmüştür. Sodyum borhidrürün (NaBH4) metanoliz reaksiyonundan hidrojen üretimi için katalizör destek maddesi olarak kullanılacak S. Platensis mikroalginin protonlanması için fosforik asit (3M H3PO4) kullanılmıştır. Daha sonra mikroalg, Al2O3 ile 1;1 oranında karıştırılarak destek maddesi olarak hazır hale getirilmiştir. Bu modifiye edilmiş Al2O3/S. Platensis karışımı destek maddesi, kobalt iyonları ile yakıldıktan sonra indirgenmiş ve Al2O3/S. Platensis destekli Co katalizörü elde edilmiştir. Al2O3/S. Platensis destekli katalizöre Co2+ metali ilavesi %10, %20, %30 ve %40 oranında eklenerek katalizör sentezi gerçekleştirilmiştir. Bu çalışmada, genel olarak deneyler 30 °C’de 0,025 g NaBH4 içeren 10 mL’lik metanol çözeltisinde 0,1 g katalizör varlığında bozundurularak zamana bağlı hidrojen miktarları ölçülmüştür. Deneysel çalışmalarda elde edilen hidrojen, gaz ölçüm sisteminde hacimsel olarak belirlenmiştir. Yapılan deneylerde farklı NaBH4 konsantrasyonları, katalizör miktarı ve farklı sıcaklık etkileri incelenmiştir. Deneylerde NaBH4 miktarı incelenirken %1, %2.5, %5, ve %7.5 oranında NaBH4 kullanılmış, katalizör miktarı etkinliği incelenirken ise sırasıyla 0.05, 0.1, 0.15, ve 0.25 g katalizör denenmiştir.  Al2O3/S. Platensis destekli Co katalizörü varlığında NaBH4 metanolizi ile hidrojen üretiminde, sıcaklık etkisini araştırmak için 30, 40, 50 ve 60 °C olmak üzere dört farklı sıcaklık deneyi yapılmıştır. Al2O3/S. Platensis destekli Co katalizörü kullanılarak gerçekleştirilen deneylerde en iyi metal oranının %10 Co2+ olduğu belirlenmiştir. Bunun yanı sıra NaBH4’ün metanoliz reaksiyonundan elde edilen maksimum hidrojen üretim hızı 5747,1 mLdak-1gkat-1 ve katalizörün aktivasyon enerjisi 34.67 kJ mol-1 olarak belirlenmiştir. Aynı zamanda, üretilen katalizörünün yapılan farklı NaBH4 konsantrasyonları, katalizör miktarları ve sıcaklık deneyleri için NaBH4 dönüşüm %’sinde azalma olmadığı belirlenmiştir.  

Investigation of Hydrogen Production from Sodium Borohydride Methanolysis in the Presence of Al2O3/Spirulina Platensis Supported Co Catalyst

In this study, Al2O3/Spirulina Platensis mixture was used for the first as support material. The aim is to demonstrate that microalgae can be used as a new, economic and environmental support agent to increase the efficiency of the catalysts that will be eventually used in the production of hydrogen. The strain was grown by preparing the culture medium containing all the necessary nutrients as described in the literature. To synthesize the catalyst for the production of hydrogen through methanolysis of sodium borohydride (NaBH4), phosphoric acid (3M H3PO4) was used as the protonation agent for the selected strain. After achieving sufficient density, the strain was dried and mixed with Al2O3 in the ratio of 1/1. Modified Al2O3/S. Platensis mixture was finally blended with cobalt ions and the mixture was burned. As a result of this procedure Al2O3/S. Platensis supported Co catalyst was produced. The catalyst was prepared with the addition of different Co2+ metal concentrations, 10%, 20%, 30%, and 40% respectively. In the present study, the experiments were generally carried out with 10 ml methanol solution containing in 0.025 g NaBH4 with 0.1 g catalyst at 30 °C. The hydrogen obtained in experimental studies was determined volumetric in the gas measurement system. Here, different NaBH4 concentrations, catalyst amount and different temperature effects were investigated. The effect of the amount of NaBH4 was investigated with 1%, 2.5%, 5%, and 7.5% ratio of NaBH4 while the influence of the concentration of catalyst was carried out 0.05, 0.1, 0.15, and 0.25 g catalysts. To investigate the performance of the catalyst on hydrogen production with NaBH4 methanolysis under different temperatures, 30, 40, 50 ve 60 °C, relatively. The experiments by using Al2O3/S. Platensis supported Co Catalyst reveal that the best metal ratio was 10% Co2+. In addition, the maximum hydrogen production rate through methanolysis reaction of NaBH4 by this catalyst was found to be 5747.1 mLmin-1gcat-1. Also, the activation energy was determined to be 34.67 kJ mol-1. Moreover, different NaBH4 concentrations, catalyst amounts and temperature studies of the fabricated catalyst were carried and it was discovered that there was no decline in the % of conversion for the synthesized catalyst.

___

  • Bekiroğullari, M., Kaya, M., & Saka, C. (2019). Highly efficient Co-B catalysts with Chlorella Vulgaris microalgal strain modified using hydrochloric acid as a new support material for hydrogen production from methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 44(14), 7262-7275.
  • Zhang, J., Fisher, T. S., Gore, J. P., Hazra, D., & Ramachandran, P. V. (2006). Heat of reaction measurements of sodium borohydride alcoholysis and hydrolysis. International journal of hydrogen energy, 31(15), 2292-2298.
  • Ramya, K., Dhathathreyan, K. S., Sreenivas, J., Kumar, S., & Narasimhan, S. (2013). Hydrogen production by alcoholysis of sodium borohydride. International Journal of Energy Research, 37(14), 1889-1895.
  • Yan, K., Li, Y., Zhang, X., Yang, X., Zhang, N., Zheng, J., ... & Smith, K. J. (2015). Effect of preparation method on Ni2P/SiO2 catalytic activity for NaBH4 methanolysis and phenol hydrodeoxygenation. International Journal of Hydrogen Energy, 40(46), 16137-16146.
  • Sahiner, N., & Demirci, S. (2017). Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis. Applied Catalysis B: Environmental, 202, 199-206.
  • Ekinci, A., Şahin, Ö., Saka, C., & Avci, T. (2013). The effects of plasma treatment on electrochemical activity of Co–W–B catalyst for hydrogen production by hydrolysis of NaBH4. International Journal of Hydrogen Energy, 38(35), 15295-15301.
  • Xu, D., Wang, H., Guo, Q., & Ji, S. (2011). Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4. Fuel processing technology, 92(8), 1606-1610.
  • Ahlström-Silversand, A. F., & Odenbrand, C. U. I. (1999). Modelling catalytic combustion of carbon monoxide and hydrocarbons over catalytically active wire meshes. Chemical Engineering Journal, 73(3), 205-216.
  • Sandelin, F., Oinas, P., Salmi, T., Paloniemi, J., & Haario, H. (2006). Dynamic modelling of catalytic liquid-phase reactions in fixed beds—kinetics and catalyst deactivation in the recovery of anthraquinones. Chemical Engineering Science, 61(14), 4528-4539.
  • Helvacı, C. (2016). Türkiye borat yatakları Jeolojik konumu, ekonomik önemi ve bor politikası. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 4-41.