Anaerobik Mesafe Kapasitesi Futbolda Hız, İvmelenme ve Çeviklik Üzerinde Etkili midir?

Bu çalışma, genç futbol oyuncularında anaerobik mesafe kapasitesinin çeviklik, hız ve ivme üzerindeki etkisini incelemeyi amaçlamıştır. Bu çalışmaya 25 genç futbol oyuncusu (n= 25, yaş= 16,72±1,10 yıl, boy uzunluğu= 174,04±8,34 cm, vücut ağırlığı= 65,86±11,26 kg) gönüllü olarak katılmıştır. Genç futbolcul oyuncularının çeviklik değerleri Illinois çeviklik testi ile elde edildi. Oyuncuların sürat ve ivme değerleri 30 metre sprint testiyle ölçüldü. Kritik hız ve anaerobik mesafe kapasitesi değerlerini belirlemek için 800 ve 2400 metre koşu testleri uygulandı. Oyuncular tüm testleri sentetik çim futbol sahasında maksimum eforla uyguladılar. Kritik hız ve anaerobik mesafe kapasitesi değerleri toplam mesafe modeli (800 ve 2400 metre koşularının süre ve mesafeleri arasında uygulanan doğrusal regresyon analizi) ile belirlendi. Regresyon doğrusunun eğimi ve y ekseninde kestiği nokta sırasıyla kritik hız ve anaerobik mesafe kapasitesi olarak belirlendi (Toplam Mesafe Modeli: Koşu Mesafesi = Anaerobik Mesafe Kapasitesi + Kritik Hız x Koşu Süresi). Kritik hız ve anaerobik mesafe kapasitesi değerlerinin çeviklik, sürat ve ivme üzerindeki etkisi çoklu doğrusal regresyon analizi ile incelenmiştir. Doğrusal regresyon modellerine göre anaerobik mesafe kapasitesi ve kritik hız değerlerinin çeviklik, sürat ve ivme değerlerinin anlamlı yordayıcısı olmadığı belirlendi (p>0,05). Sonuç olarak, genç futbol oyuncularında anaerobik mesafe kapasitesi değerinin çeviklik, sürat ve ivme gibi yüksek yoğunluklu anaerobik aktiviteler üzerinde önemli bir etkiye sahip olmadığı söylenebilir.

Is Anaerobic Distance Capacity Effective on Speed, Acceleration and Agility in Football?

This study purposed to examine the effect of anaerobic distance capacity on agility, speed and acceleration in young football players. Twenty-five young football players participated in the present study voluntarily (n= 25, age= 16.72±1.10 years, height= 174.04±8.34 cm, weight= 65.86±11.26 kg). Agility value of young football players was obtained by the Illinois agility test. The speed and acceleration values of players were measured by 30-meter sprint test. 800 and 2400-meter run tests were performed to determine critical velocity and anaerobic distance capacity values. Players performed all of tests with maximum effort on a synthetic grass football pitch. The critical velocity and anaerobic distance capacity values were determined by total distance model (linear regression analysis between time and distance of 800 and 2400-meter runs). The slope and y-intercept of the regression line was determined as critical velocity and anaerobic distance capacity values, respectively (Total Distance Model: Run Distance = Anaerobic Distance Capacity + Critical Velocity x Run Duration). The effect of critical velocity and anaerobic distance capacity values on agility, speed and acceleration was examined by multiple linear regression analysis. According to linear regression models, it was found that anaerobic distance capacity and critical velocity values were not significant predictors of agility, speed and acceleration (p>0.05). Consequently, it can be said that anaerobic distance capacity value does not affect high-intensity anaerobic activities such as agility, speed, and acceleration in young football players.

___

  • Bull, A.J., Housh, T.J., Johnson, G.O., & Rana, S.R. (2008). Physiological responses at five estimates of critical velocity. European Journal of Applied Physiology, 102(6), 711-720. https://doi.org/10.1007/s00421-007-0649-7
  • Denadai, B.S., Gomide, E.B.G., & Greco, C.C. (2005). The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players. The Journal of Strength & Conditioning Research, 19(2), 364-368. https://doi.org/10.1519/1533-4287
  • Ettema, J.H. (1966). Limits of human performance and energy-production. Internationale Zeitschrift für Angewandte Physiologie Einschließlich Arbeitsphysiologie, 22, 45-54. https://doi.org/10.1007/BF00694796
  • Florence, S. L., and Weir, J. P. (1997). Relationship of critical velocity to marathon running performance. European Journal of Applied Physiology and Occupational Physiology, 75(3), 274-278. https://doi.org/10.1007/s004210050160
  • Gaesser, G.A., Carnevale, T.J., Garfinkel, A., Walter, D.O., & Womack, C.J. (1995). Estimation of critical power with nonlinear and linear models. Medicine and Science in Sports and Exercise, 27(10), 1430-1438. https://doi.org/10.1249/00005768-199510000-00012
  • Hill, D.W. (1993). The critical power concept: A review. Sports Medicine, 16, 237-254. https://doi.org/10.2165/00007256-199316040-00003
  • Hill, D.W., and Ferguson, C.S. (1999). A physiological description of critical velocity. European Journal of Applied Physiology and Occupational Physiology, 79, 290-293. https://doi.org/10.1007/s004210050509
  • Housh, D.J., Housh, T.J., & Bauge, S.M. (1990). A methodological consideration for the determination of critical power and anaerobic work capacity. Research Quarterly for Exercise and Sport, 61(4), 406-409. https://doi.org/10.1080/02701367.1990.10607506
  • Housh, T.J., Cramer, J.T., Bull, A.J., Johnson, G.O., & Housh, D.J. (2001). The effect of mathematical modeling on critical velocity. European Journal of Applied Physiology, 84(5), 469-475. https://doi.org/10.1007/s004210000375
  • Jenkins, D.G., and Quigley, B.M. (1990). Blood lactate in trained cyclists during cycle ergometry at critical power. European Journal of Applied Physiology and Occupational Physiology, 61, 278-283. https://doi.org/10.1007/BF00357613
  • Kaplan, T., Erkmen, N., & Taskin, H. (2009). The evaluation of the running speed and agility performance in professional and amateur soccer players. The Journal of Strength & Conditioning Research, 23(3), 774-778. https://doi.org/10.1519/JSC.0b013e3181a079ae
  • Karsten, B., Larumbe-Zabala, E., Kandemir, G., Hazir, T., Klose, A., & Naclerio, F. (2016). The effects of a 6-week strength training on critical velocity, anaerobic running distance, 30-M sprint and Yo-Yo intermittent running test performances in male soccer players. PloS One, 11(3), e0151448. https://doi.org/10.1371/journal.pone.0151448
  • Köklü, Y., Alemdaroğlu, U., Özkan, A., Koz, M., & Ersöz, G. (2015). The relationship between sprint ability, agility and vertical jump performance in young soccer players. Science & Sports, 30(1), e1-e5. https://doi.org/10.1016/j.scispo.2013.04.006
  • Kramer, M., Thomas, E.J., & Pettitt, R.W. (2020). Critical speed and finite distance capacity: norms for athletic and non-athletic groups. European Journal of Applied Physiology, 120(4), 861-872. https://doi.org/10.1007/s00421-020-04325-5
  • Kranenburg, K.J., and Smith, D.J. (1996). Comparison of critical speed determined from track running and treadmill tests in elite runners. Medicine and Science in Sports and Exercise, 28(5), 614-618. https://doi.org/10.1097/00005768-199605000-00013
  • Little, T., and Williams, A.G. (2005). Specificity of acceleration, maximum speed, and agility in professional soccer players. The Journal of Strength & Conditioning Research, 19(1), 76-78. https://doi.org/10.1519/14253.1
  • Meckel, Y., Machnai, O., & Eliakim, A. (2009). Relationship among repeated sprint tests, aerobic fitness, and anaerobic fitness in elite adolescent soccer players. The Journal of Strength & Conditioning Research, 23(1), 163-169. https://doi.org/10.1519/JSC.0b013e31818b9651
  • Monod, H., and Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8(3), 329-338. https://doi.org/10.1080/00140136508930810
  • Moritani, T., Nagata, A., Devries, H.A., & Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350. https://doi.org/10.1080/00140138108924856
  • Morton, R.H. (2014). A decline in anaerobic distance capacity of champion athletes over the years?. International Journal of Sports Science & Coaching, 9(5), 1057-1065. https://doi.org/10.1260/1747-9541.9.5.1057
  • Penteado, R., Salvador, A.F., Corvino, R.B., Cruz, R., Lisbôa, F.D., Caputo, F., & De Lucas, R.D. (2014). Physiological responses at critical running speed during continuous and intermittent exhaustion tests. Science & Sports, 29(6), e99-e105. https://doi.org/10.1016/j.scispo.2014.02.003
  • Raya, M.A., Gailey, R.S., Gaunaurd, I.A., Jayne, D.M., Campbell, S.M., Gagne, E., & Tucker, C. (2013). Comparison of three agility tests with male servicemembers: Edgren Side Step Test, T-Test, and Illinois Agility Test. Journal of Rehabilitation Research & Development, 50(7), 951-960. https://doi.org/10.1682/JRRD.2012.05.0096
  • Sever, O., and Arslanoğlu, E. (2016). Agility, acceleration, speed and maximum speed relationship with age factor in soccer players. Journal of Human Sciences, 13(3), 5660-5667. https://doi.org/10.14687/jhs.v13i3.4152
  • Sheppard, J.M., and Young, W.B. (2006). Agility literature review: Classifications, training and testing. Journal of Sports Sciences, 24(9), 919-932. https://doi.org/10.1080/02640410500457109 Taylor, S.A., and Batterham, A.M. (2002). The reproducibility of estimates of critical power and anaerobic work capacity in upper-body exercise. European Journal of Applied Physiology, 87, 43-49. https://doi.org/10.1007/s00421-002-0586-4
  • Vanhatalo, A., Jones, A.M., & Burnley, M. (2011). Application of critical power in sport. International Journal of Sports Physiology and Performance, 6(1), 128-136. https://doi.org/10.1123/ijspp.6.1.128
  • Vigne, G., Gaudino, C., Rogowski, I., Alloatti, G., & Hautier, C. (2010). Activity profile in elite Italian soccer team. International Journal of Sports Medicine, 31(05), 304-310. https://doi.org/10.1055/s-0030-1248320
  • Young, W.B., James, R., & Montgomery, I. (2002). Is muscle power related to running speed with changes of direction?. Journal of Sports Medicine and Physical Fitness, 42(3), 282-288.
Avrasya Spor Bilimleri ve Eğitim Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2019
  • Yayıncı: Nazmi SARITAŞ