Epigenetic Approach in Forensic Age Estimation

Epigenetic Approach in Forensic Age Estimation

Age estimation study is a very important research area that contributes to the solution of the forensic case by helping to identify the identity in forensic sciences. Human age estimation in the traditional way is performed by analysis of bony marks on bones and teeth. An analysis of the age estimation of biological samples from the use of genetic analysis has not yet become part of routine practice. The use of genetic analyses for forensic purposes started with the Restriction Fragment Length Polymorphism (RFLP) analysis in the late 1980s and developed with Short Tandem Repeats (STR) analysis. Along with the technological developments in forensic genetics, progress has continued with single nucleotide polymorphism (SNP) analysis, which enables the identification of hair, eye and skin color and geographic infrastructure of an unknown sample in forensic case resolution. However, recent studies in forensic genetics have focused on epigenetic mechanisms and it has been discovered that DNA methylation can be used in case resolution for forensic age estimation. With the development of DNA methylation studies, a quantitative statistical relationship has been established between DNA methylation and different age groups. T he r esults have been obtained with ± 3-4 age prediction accuracy using DNA methylation markers (CpG regions) tested to date with different methodological approaches. Thus, with the advancement of epigenetic studies in the fields of forensic sciences, the phenotypic features of the DNA of the evidence samples have been estimated with some error rates. The aim of this study is to reveal the latest developments in the field of epigenetics and evaluation of the use of epigenetic-based age estimates for forensic purposes.

___

  • Ammerpohl, O., Martin-Subero, J. I., Richter, J., Vater, I., Siebert, R. (2009). Hunting for the 5th base: techniques for analyzing DNA methylation. Biochim. Biophys. Acta, 1790, 847–862.
  • Andrew, T., Calloway, C. D., Stuart, S., Lee, S. H., Gill, R., Clement, G., Chowienczyk, P., Spector, T. D., Valdes, A. M. A. (2011). Twin study of mitochondrial DNA polymorphisms shows that heteroplasmy at multiple sites is associated with mtDNA variant 16093 but not with zygosity. PLoS One, 6(8), e22332.
  • Beerman, I., Bock, C., Garrison, B. S., Smith, Z. D., Gu, H., Meissner, A., Rossi, D. J. (2013). Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell, 12, 413–425.
  • Bekaert, B., Kamalandua, A., Zapico, S. C., Voorde, W. V., Decorte, R. (2015). Improved age determination of blood and teeth samples Using a selected set of DNA methylation markers. Epigenetics, 10(10), 922-930.
  • Blasco, M. A. (2005). Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet, 6, 611–622.
  • Bocklandt, S., Lin, W., Sehl, M., Sanchez, F., Sinsheimer, J., Horvath, S., Vilain, E. (2011). Epigenetic predictor of age. PLos ONE, 6(6), e14821 (1–6).
  • Day, K., Waite, L. L., Mercer, A. T., West, A., Bamman, M. M., Brooks, J. D., Myers, R. M., Absher D. (2013). Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol, 14, 1–19.
  • Florath, I., Butterbach, K., Muller, H., Bewerunge-Hudler, M., Brenner, H. (2014). Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum. Mol. Genet, 23, 1186–1201.
  • Fraga, M., Ballestar, E., Paz, M., Ropero, S., Setien, F., Ballestar, M., Heine-Suner, D., Cigudosa,J. et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci, 102, 10604–10609.
  • Fraser, H. B., Lam, L. L., Neumann, S. M., Kobor, M. S. (2012). Population-specificity of human DNA methylation. Genome Biol, 13, R8.
  • Garagnani, P., Bacalini, M.G., Pirazzini, C., Gori, D., Giuliani, C., Mari, D., et al. (2012). Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell, 11, 1132–1134.
  • Gentilini, D., Mari, D., Castaldi, D., Remondini, D., Ogliari, G. Ostan, R., Bucci, L., Sirchia, S.M., Tabano, S., Cavagnini, F. (2013). Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age, 35, 1961–1973.
  • Helfman, P. M., Bada, J. L. (1976). Aspartic acid racemisation in dentine as a measure of ageing. Nature, 262, 279–281.
  • Hernandez, D. G., Nalls, M. A., Gibbs, J. R., Arepalli, S., van der Brug, M., Chong, S., et al. (2011). Distinct DNA methylation changes highly correlated with chronological age in the human brain,.Hum. Mol. Genet, 20, 1164–1172.
  • Hillewig, E., Degroote, J., Van der Paelt, T., Visscher, A., Vandemaele, P., Lutin, B., et al. (2013). Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int. J. Legal Med, 127, 677–689.
  • Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biol, 14, R115.
  • Johansson, A., Enroth, S., Gyllensten, U. (2013) Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One, 8, e67378.
  • Koch, C., Wagner, W. (2011). Epigenetic-aging-signature to determine age in different tissues. Aging, 3(10), 1–10.
  • Kohli, R. M., Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502, 472–479.
  • Kristensen, L. S., Hansen, L. L. (2009). PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin. Chem, 55, 1471–1483.
  • Li, C., Zhang, S., Que, T., Li, L., Zhao, S. (2011). Identical but not the same: the value of DNA methylation profiling in forensic discrimination within monozygotic twins. Forensic Sci. Int. Genet. Suppl. Ser, 3, 337–338.
  • Li, X., Li, W., and Xu, Y. (2018). Human age prediction based on DNA methylation using a gradient boosting regressor. Genes, 9(9), 424.
  • Lynnerup N., Kjeldsen H., Zweihoff R., Heegaard S., Jacobsen C., Heinemeier J. (2010). Ascertaining year of birth/age at death in forensic cases: a review of conventional methods and methods allowing for absolute chronology. Forensic Sci. Int, 201, 74–78.
  • Mc Ewen, L. M., Jones, M. J., Lin, D. T. S., Edgar, R. D., Husquin, L. T., MacIsaac, J. L., and Quintana-Murci, L. (2018). Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the Infinium MethylationEPIC BeadChip array. Clinical epigenetics, 10(1), 123.
  • Meissner, C., von Wurmb, N., Oehmichen, M. (1997). Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. A pilot study. Int. J. Legal Med, 110, 288–291.
  • Meissner, C., Ritz-Timme, S. (2010) Molecular pathology and age estimation. Forensic. Sci. Int, 203, 34–43.
  • Olze, A., Reisinger, W., Geserick, G., Schmeling, A. (2006). Age estimation of unaccompanied minors: part II. Dental aspects. Forensic Sci. Int, 159(1) S65–7.
  • Park, J. L., Kwon, O. H., Kim, J. H., Yoo, H. S., Lee, H. C., Woo, K. M., et al. (2014). Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci. Int. Genet, 13, 147–153.
  • Peng, S. Y., Jie, Z., Tian, M. P., Wang, Z. L., Shen, H. Q. (2012). Determination of global DNA methylation in biological samples by liquid chromatography-tandem mass spectrometry. Chin. J. Anal. Chem, 40, 1201–1206
  • Richardson, B. (2003). Impact of aging on DNA methylation. Ageing research reviews, 2(3), 245-261.
  • Sahin, K., Yilmaz, S., Temel, A., Gozukirmizi, N. (2011). DNA methylation analyses of monozygotic twins. Abstr./Cur. Opin. Biotech, 22S,15–152.
  • Samuel, C. E. (2012). Adenosine deaminases acting on RNA (ADARs) and A-to-I editing. Curr. Top. Microbiol. Immunol, 353, 35–60.
  • Steegenga, W. T., Boekschoten, M. V., Lute, C., Hooiveld, G. J., de Groot, P. J., Morris, T. J., et al. (2014). Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. Age (Dordr.), 36, 9648.
  • Szyf, M. (2011). DNA methylation, the early-life social environment and behavioural disorders. J. Neurodevelop. Disord, 3, 238–249.
  • Tammen, S. A., Friso, S., Choi, S. W. (2013). Epigenetics: the link between nature and nurture. Mol. Aspects Med, 34, 753–764.
  • Tost, J., Gut, I. G. (2007). DNA methylation analysis by pyrosequencing. Nat. Protoc, 2, 2265–2275.
  • Vidaki, A., Daniel, B., Court, D.S. (2013). Forensic DNA methylation profiling–potential opportunities and challenges. Forensic Sci. Int. Genet, 7, 499–507.
  • Weidner, C. I., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., et al. (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol, 15, R24.
  • Wild, L., Flanagan, J. (2010). Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochim. Biophys. Acta, 1806, 50–57.
  • Wong, A., Gottesman, I., Petronis, A. (2005). Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet, 14(1), R11–R18.
  • Yi, S. H., Jia, Y. S., Mei, K., Yang, R. Z., Huang, D. X. (2015). Age-related DNA methylation changes for forensic age-prediction. Int. J. Legal Med, 129, 237–244.
  • Yi, S. H., Xu, L.C., Mei, K., Yang, R. Z. Huang, D. X. (2014). Isolation and identification of age-related DNA methylation markers for forensic age-prediction. Forensic Sci. Int. Genet, 11, 117–125.
  • Zbiec-Piekarska, R., Spolnicka, M., Kupiec, T., Parys-Proszek, A., Makowska, Z., Paleczka, A., et al. (2015). Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet, 17, 173–179.
  • Zubakov, D., Liu, F., van Zelm, M. C., Vermeulen, J., Oostra, B. A., van Duijn, C. M., Driessen, G. J., van Dongen, J., Kayser, M., Langerak, A. W. (2010). Estimating human age from T- cell DNA rearrangements. Curr. Biol. 20 (22), R970–R971.