A New Approach in Epilepsy Treatment: Nanocarrier Systems

A New Approach in Epilepsy Treatment: Nanocarrier Systems

Central nervous system (CNS) diseases have a very important place in terms of public health. Epilepsy is one of the most common CNS diseases. Epilepsy is a chronic disease and a cause of substantial morbidity and mortality. The causes of this disease, of which many people around the world suffer from epilepsy, are still not fully clarified. It is known that approximately 50 million people suffer from epilepsy. Antiepileptic drugs are frequently used in the treatment of epilepsy, but the difficulty with these drugs is the emergence of drug resistance additionally antiepileptic drugs can be administered in oral and intravenous ways. But these treatments are not every time effective. On the other hand, drugs used in the treatment of epilepsy must be delivered effectively and safely within the brain. Therefore, new delivery systems are needed to deliver drugs at concentrations determined for high therapeutic efficacy in epilepsy without side effects. Considering this information, there is a need to develop new treatment strategies. With the development of nanotechnology, nanoparticles as an effective drug delivery system have been shown to be significantly effective in the treatment of diseases. Nanocarrier systems can fulfill many functions such that they can cross the blood-brain barrier (BBB) pass a specific cell or signaling pathway, reply to endogenous stimulus, support nerve regeneration, and ensure cell survival. Thanks to these features, it is seen that nano-carrier systems are quite assertive in being the current treatment methods in epilepsy. Today, studies of the therapeutic efficacy of liposomes, micelles, solid lipid nanoparticles, dendrimers, and nanoemulsions as nano-carrier systems on central nervous system diseases are still ongoing. It holds promise in the concentration control of the drugs and in the delivery of the drug to the target tissue through the BBB. In this review, the role of nanocarrier systems in addition to current treatment methods in epilepsy disease was investigated.

___

  • Alexander, A., Agrawal, M., Uddin, A., Siddique, S., Shehata, A. M., Shaker, M.A., Rahman, S.A., Abdul, M.I.M., Shaker. M.A. (2019). Recent expansions of novel strategies towards the drug targeting into the brain. International Journal Nanomedicine. 14, 5895–5909. Doi: 10.2147/IJN.S210876.
  • Aronica, E., Muhlebner, A. (2017). Neuropathology of epilepsy. Handbook of Clinical Neurology. 145,193-216. Doi: https://doi.org/10.1016/B978-0-12-802395-2.00015-8.
  • Beghi, E. (2020). The epidemiology of epilepsy. Neuroepidemiology. 54, 185–191. Doi:10.1159/000503831.
  • Bonferoni, M.C., Rossi, S., Sandri, G., Ferrari, F., Gavini, E., Rassu, G., Giunchedi, P. (2019). Nanoemulsions for “Nose-to-Brain” drug delivery. Pharmaceutics. 11, 84 Doi: 10.3390/pharmaceutics11020084.
  • Devinsky, O., Vezzani, A., O’Brien, T.J., Jette, N., Scheffer, I.E., De Curtis, M., Perucca, P. (2018). Epilepsy. Nature Reviews Disease Primers. 4, 180-24. Doi: 10.1038/nrdp.2018.24.
  • Erdinç, O. (2013). Principles of therapy in the epilepsies. Nobel Tıp Kitabevleri, İstanbul.
  • Edwards, C.A., Kouzani A., Lee, K.H., Ross, E.K. (2017). Neurostimulation devices for the treatment of neurologic disorders. Mayo Clinic Proceedings. 92(9), 1427–1444.
  • Ergun, E., Salancı, B., Erbas, B. (2017). SPECT and PET in epilepsy, Nuclear Medicine Department, Hacettepe University Faculty of Medicine. Turkiye Klinikleri J Nucl Med-Special Topics. 3(2), 123-31.
  • Feigin, V.L., Nichols, E., Alam, T., Bannick, M.S., Beghi, E., Blake, N., Culpepper, W.J., Dorsey, E.R., Elbaz, A., Ellenbogen, R.G., Fisher, J.L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S.L., Johnson, C.O., et al. (2019). Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 18, 459–480.
  • Fiest, K.M., Sauro, K.M., Wiebe, S., Patten, S.B., Kwon, C.S., Dykeman, J., Pringsheim, T., Lorenzetti, D.L., Jetté, N. (2017). Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology. Jan 17, 88(3), 296–303.
  • Fisher, R., Van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J. (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 46(4), 470–2. Doi:10.1111/j.0013-9580.2005.66104.x.
  • Fisher, R.S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J.H., Elger, C.E., Engel, J., Forsgren, L., French, J.A., Glynn, M., Hesdorffer, D.C., Lee, B.I., Mathern, G.W., Moshé, S.Lç, Perucca, E., Scheffer, I.E., Tomson, T., Watanabe, M., Wiebe, S. (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 55(4), 475–82. Doi:10.1111/epi.12550.
  • Hynes, K., Tarpey, P., Dibbens, L.M., Bayly, M.A., Berkovic, S.F., Smith, R., Raisi, S., Turner, S.J., Brown, N.J., Desai, T., Haan, E., Turner G., Christodoulou, J., Leonard, H., Gill, D., Stratton, R., Gecz, J., Scheffer, I.E. (2010). Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families. Journal of Medical Genetics. 47(3), 211-6. Doi: http://dx.doi.org/10.1136/jmg.2009.068817.
  • Kınay, D. (2012). Neuroimaging in Epilepsy Surgical Applications. Bakirkoy Prof. Dr. Mazhar Osman Mental and Neurological Diseases Training and Research Hospital 1. Neurology Clinic. Epilepsi. 18(1), 18-29. Doi: 10.5505/epilepsi.2012.36035.
  • Kwan, P., Schacter, S.C., Brodie, M.J. (2011). Drug-resistant epilepys. The New England Journal of Medicine. 365, 919- 926.
  • Kwon, C.S., Ripa, V., Al-Awar, O., Panov, F., Ghatan, S., Jetté, N. (2018). Epilepsy and neuromodulation—randomized controlled trials. Brain Science. Apr 18, 8(4), 69. Doi: 10.3390/brainsci8040069.
  • Li M., Deng H., Peng H., Wang Q. (2014). Functional nanoparticles in targeting glioma diagnosis and therapies. Journal of Nanoscience and Nanotechnology. Jan 1, 14, 415–432. Doi: 10.1166/jnn.2014.8757.
  • Liu, H., Yang, Y., Wang, Y., Tang, H., Zhang, F., Zhang, Y., Zhao, Y. (2018). Ketogenic diet for treatment of intractable epilepsy in adults: a meta‐analysis of observational studies Epilepsia Open. Feb 19, 3(1), 9-17. Doi: 10.1002/epi4.12098.
  • Poovaiah, N., Davoudi, Z., Peng, H., Schlichtmann, B., Mallapragada, S., Narasimhan, B., Wang, Q. (2018). Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale. 10, 16962–16983. Doi: 10.1039/c8nr04073g.
  • Reif, P.S., Strzelczyk, A., Rosenow, F. (2016). The history of invasive EEG evaluation in epilepsy patients. Seizure. 41, 191-195. Doi: 10.1016/j.seizure.2016.04.006.
  • Ryvlin, P., Rheims, S. (2008). Epilepsy surgery: eligibility criteria and presurgical evaluation. Dialogues in Clinical Neuroscience. 10(1), 91-103.
  • Pandolfo, M. (2011). Genetics of epilepsy. Seminars in Neurology. 31(5), 506–18. Doi: 10.1055/s-0031-1299789.
  • Rowland, L. P. (2008). Merrit’s neurology. Editor; Baslo, B., Gürses, C. Güneş Tıp Kitabevleri. İstanbul. ISBN: 9789752771819.
  • Samia, O., Hanan, R., Kamal, E.T. (2012). Carbamazepine mucoadhesive nanoemulgel (mneg) as brain targeting delivery system via the olfactory mucosa. Drug Deliv. 19, 58–67. Doi: 10.3109/10717544.2011.644349.
  • Skarpaas, T.L., Jarosiewicz, B., Morrell, M.J. (2019). Brain-responsive neurostimulation for epilepsy (RNS ® System). Epilepsy Res. 153, 68-70. Doi: 10.1016/j.eplepsyres.2019.02.00.
  • Téllez-Zenteno, J.F., Hernandez-Ronquillo, L., Buckley, S., Zahagun, R., Rizvi, S. (2014). A validation of the new definition of drug-resistant epilepsy by the International League Against Epilepsy. Epilepsia. 55(6), 829–34.
  • Thurman, D.J., Logroscino, G., Beghi, E., Hauser, W.A., Hesdorffer, D.C., Newton, C.R., Scorza, A.F., Sander, J.W., Tomson, T., Epidemiology Commission of the International League Against Epilepsy. (2017). The burden of premature mortality of epilepsy in high-income countries: A systematic review from the mortality task force of the International League Against Epilepsy. Epilepsia. 58(1), 17–26. Doi: 10.1111/epi.13604.
  • Ullah, I., Hussain, M., Qazi, E., Aboalsamh, H. (2018). An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Systems with Applications.107(1), 61-71.
  • Vilella, A., Tosi, G., Grabrucker, A.M., Ruozi, B., Belletti, D., Vandelli, M.A., Boeckers, T.M., Forni, F., Zoli, M. (2014). Insight on the fate of CNS-targeted nanoparticles. Part I: Rab5-dependent cell-specific uptake and distribution. Journal of Controlled Release. 174 195–201. Doi: 10.1016/j.jconrel.2014.01.004.
  • WHO. Epilepsy fact sheet. https://www.who.int/en/news-room/fact-sheets/detail/epilepsy Date of access: 09.12.2020.
  • Wong, J.C., Shapiro, L., Thelin, J.T., Heaton, E.C., Zaman, R.U., D'Souz, M.J., Murnane, K.S., Escayg, A. (2021). Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiology of Disease. 147, 105-147. Doi: 10.1016/j.nbd.2020.105147.
  • Yalnizoglu, D., Hirfanoglu, T., Serdaroglu, A., Turanli, G., Topcu, M. (2012). Intractable epilepsy in childhood: presurgical evaluation and treatment. Epilepsi: Journal of the Turkish Epilepsi Society. 18(1), 7-14.
  • Yuan, H., Silberstein, S.D. (2016). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache. 56(1), 71-8. Doi: 10.1111/head.12647.
  • Yusuf, M., Khan, R.A., Khan, M., Ahmed, B. (2012). Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted β-carotene nanoparticles. Int J Nanomedicine. Aug 8, 7, 4311–4322. Doi: 10.2147/IJN.S34588.