Gelişme dönemindeki Japon bıldırcınlarının pankreasındaki koyu ve açık sitoplazmalı Endokrin hücreler üzerine elektron mikroskobik araştırmalar

Bu çalışma, gelişme dönemindeki Japon bıldırcınlarının pankreasındaki alfa ve beta hücrelerinin elektron mikroskobik yapısının belirlenmesi amacıyla yapıldı. Alfa adacıkları çok sayıda alfa hücreleri ile az sayıda D ve birkaç adet pankreatik polipeptid (PP) hücrelerinden oluşurken, beta adacıkları çok sayıda beta hücreleri ile birkaç adet D ve nadiren de alfa hücrelerinden oluşmaktaydı. Ayrıca, endokrin adacıklardaki alfa ve beta hücrelerinin salgı granülü ve çekirdeklerinin görünüşüne, sitoplazmasındaki serbest ribozom ve polizomların miktarına göre koyu ve açık sitoplazmalı farklı 2 tipinin olduğu belirlendi. Koyu sitoplazmalı hücrelerin açık sitoplazmalı hücrelere göre; çok fazla serbest ribozom, polizom, endoplazmik retikulum ve olgunlaşmamış granüller içermekteydi. Bu çalışmamızın sonucunda, genç Japon bıldırcınlarının endokrin pankreasında alfa ve beta hücrelerinin olgunlaşmamış granül görünümleriyle karakterize farklı tiplerinin bulunduğu belirlenmiş oldu. Endokrin adacıklarda belirlenen bu koyu sitoplazmalı endokrin hücrelerin ya dinlenme dönemindeki hücreler ya da henüz olgunlaşmamış hücreler olabileceği düşünüldü.

Electron microscopic studies on the Dark and light Endocrine cells in pancreas of young Japanese quails

The aim of this study was to examine the electron microscobic structure of the young Japanese quail pancreas. Although alpha islets were comprised of abundant alpha, moderate D and a few PP cells, beta islets were comprised of numerous beta, a few D, and rare alpha cells. Furthermore, dark and light alpha and beta cell types were identified according to the amount of ribosomes and polysomes, and to the aspect of the nuclei and secret granules in endocrine islets. Dark endocrine cells were contained more free ribosomes, polisomes, rough endoplasmic reticulum (ER) and immature granules compared to light endocrine cells. According to the results of this study, we have previously identified a novel population of alpha and beta cells characterized by immature morphology in young Japanese quail pancreas. Dark endocrine cells identified in endocrine islets, which may be either quiescent cells or immature cells.

___

  • Aluments, J., Sundler, F., Hakånson, R., 1977. Distribution, ontogeny and ultrastructure of somatostatin immunreactive cells in the pancreas and gut. Cell Tissue Res., 185, 465– 479.
  • Bernard, C., Thibault, C., Berthault, MF., Magnan, C., Saulnier, C., Portha, B., Pralong, WF., Pénicaud, L., Ktorza, A., 1998. Pancreatic B -cell regeneration after 48-h glucose infusion in mildly diabetic rats is not correlated with functional improvement. Diabetes, 47, 1058–1065.
  • Bonner-Weir, S., 2000. Islet growth and development in the adult. J. Mol. Endocrinol., 24, 297–302.
  • Böck, P., Geleff, S., 1984. Pancreatic duct glands III. Morphology of secretory epithelium and endoepithelial glands. Z. Mikrosk. Anat. Forsch., 98, 857 – 872.
  • Böck P., Moneim, M., Egerbacher, M., 1997. Development of pancreas. Microsc. Res. Techn., 37, 374 – 383.
  • Cemek, M., Kağa, S., Şimşek N., Büyükokuroğlu ME., Konuk M., 2008. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J. Nat. Med., 62, 284-93.
  • Epple, A., Brinn, JE., 1987. The comparative physiology of the pancreatic islets. Springer- Verlag, Berlin.
  • Gülmez, N., Kocamiş, H., Aslan, Ş., Nazli, M., 2004. Immunohistochemical distrubution of cells containing insulin, glucagon and somatostatin in the goose (Anser anser) pancreas. Turk. J. Vet. Anim. Sci., 28, 403–407.
  • Jackerott, M., Oster, A. and Larsson, LI., 1996. PYY in developing murine islet cells: comparisons to development of islets hormones, NPY, and BrdU incorporation. J. Histochem. Cytochem., 44, 809– 817.
  • Kanter, M., Coskun, O., Korkmaz, A., Oter, S., 2004. Effects of Nigella sativa on oxidative stress and β-cell damage in streptozotocin-induced diabetic rats. Anat. Rec., 279A, 685–691.
  • Karnovsky, M.J., 1965. Formaldehydeglutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol., 27, 137A– 138A.
  • Kodama, T. 1983. A light and electron microscopic study on the pancreatic ductal system. Acta Pathol. Jpn., 33, 297–321.
  • Ku, SK., Lee, JH., Lee, HS., 2000. An immunohistochemical study of the insulin-, glucagon- and somatostatin- immunoreactive cells in the developing pancreas of the chicken embryo. Tissue Cell, 32, 58–65.
  • Lucini, C., Castaldo, L., Lai, O., 1996. An immunohistochemical study of the endocrine pancreas of ducks. Eur. J. Histochem., 40, 45–52.
  • Lukinius, A.,. Ericsson, J., Grimelius, L., Korsgren, O., 1992. Ultrastructural studies on the ontogeny of fetal human and porcine endocrine pancreas with special reference to colocalization of the four major islet hormones. Dev. Biol., 153, 376–385.
  • Manakova, E., Titlbach, M., 2007. Development of the Chick Pancreas with Regard to Estimation of the Relative Occurrence and Growth of Endocrine Tissue. Anat. Histol. Embryol., 36, 127–134.
  • Miralles, F., Lamotte, L., Couton, D., Joshi, RL. 2006. Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int. J. Dev. Biol., 50, 17–26.
  • Petropavlovskaia, M., Bodnar, CA, Behie, LA., Rosenberg, L., 2007. Pancreatic small cells: analysis of quiescence, long-term maintenance and insulin expression in vitro. Exp. Cell Res., 313, 931–942.
  • Rawdon, BB., 1998. Morphogenesis and differentiation of the avian endocrine pancreas, with particular reference to experimental studies on the chick embryo. Micros. Res. Tech., 43, 292–305.
  • Rawdon, BB., Larsson, LI., 2000. Development of hormonal peptides and processing enzymes in the embryonic avian pancreas with special reference to co-localisation. Histochem. Cell. Biol., 114, 105–112.
  • Sağlam, M., 1976. Elektron mikroskopide tespit, gömme ve bloklama problemleri. AÜ. Vet. Fak. Dergisi, 3–4, 465–481
  • Scaglia, L., Cahill, CJ., Finegood, DT., Bonner-Weir, S., 1997. Apoptosis is part of the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology, 138, 1736–1741.
  • Smith, PH., 1974. Pancreatic islets of the coturnix quail. A light and electron microscopic study with special reference to the islet organ of the splenic lobe. Anat. Rec., 178, 567–585.
  • Şimsek, N. Alabay, B. 2008. Light and electron microscopic examinations of the pancreas in quails (Coturnix coturnix japonica). Rev. Med. Vet., 159, 198–206.
  • Şimşek, N., Özüdoğru, Z., Alabay, B. 2008. Immunohistochemical studies on the splenic lobe of the pancreas in young Japanese quails (Coturnix c. japonica). Dtsch tierarztl Wschr., 115,189–193.
  • Tanyolaç, A., 1993. Özel Histoloji, Yorum Basım Yayın Sanayi . Ankara. s.161.
  • Tomita, T., Doull, V., Pollock, HG., Kimmell, JR., 1985. Regional distrubation of pancreatic polypeptide and other hormones in chicken pancreas: reciprocal relationship between pancreatic polypeptide and glucagon. Gen. Comp. Endoc., 58, 303–310.
  • Veneable, JH., Coggeshall, R., 1965. A simplified lead citrate stain for use in electron microscopy. J. Cell. Biol., 25, 407–408.
  • Watanabe, T., Chikazawa, H., Yamada, J., 1984. Catecholamine-containing pancreatic islet cells of the domestic fowl. Light, fluorescence and electron microscopy, and immunohistochemistry. Cell Tissue Res., 237, 239–144.