Elektroeğrilmiş Nanofiber Yapıların Kanser Tedavisinde Kullanımı: Mevcut İlerlemeler ve Gelecek Persfektifler

Nanoteknoloji, tıp bilimleri dahil olmak üzere hayatın hemen her alanında önemli bir rol oynamıştır. Nanoteknolojik ürünlerin önemli bir sınıfını da nanofiberler oluşturmaktadır. Nanofiberlerle biyomedikal uygulamalarla ilgili başlıca araştırma hatları, kontrollü ilaç salım uygulamaları için antitümör ilaçların kapsüllenmesini, doku mühendisliği ve rejeneratif tıp için iskele yapılarını ve ayrıca kanser tümörlerinin azaltılmasında uygulanacak manyetik veya plazmonik hipertermiyi kapsamaktadır. Özellikle, kemoterapide kullanılan genel antikanser ilaçlarının, yüksek doz kullanımları ile ciddi yan etkilerle ilişkili olması ve normal hücrelere de zarar vermesinden dolayı, kontrollü ve sürekli bir ilaç salınımı, faydalar sağlamaktadır. Bu amaçla kullanılan antikanser ilacı yüklü nanofiberler, ilacın daha uzun süre korunmasını ve daha az ilaçla sonuca ulaşılmasını sağladığı için önemli sonuçlara ulaşılmıştır. Elektrospun nanofiberler, çok geniş yüzey alanına, kontrol edilebilir gözenek boyutuna ve ayarlanabilir ilaç salım profillerine sahip olup, gelecek vadeden adaylardır. Elektroeğirme yönteminin nanofiber yapıları üretmede sunduğu göreceli kolaylık, farklı polimer yapıların, polimer veya inorganik maddelerin kompozit olarak kullanılabilmeleri, farklı boyut, şekil, gözenek boyutlarında üretilebilmeleri, dış ve/veya iç uyaranlara (pH, sıcaklık, manyetik alan, ışık vb.) yanıt verme yeteneklerine sahip olabilmeleri, yeni stratejilerin ve yeni araştırmaların sayısını oldukça arttırmaktadır. Bunun yanında, nanofiberlerin kanser tedavisinde uygulanmasına ilişkin çok sayıda araştırma raporu bulunmaktadır. Bu derleme makale, başarılı kanser tedavisi için rapor edilmiş, bazı elektrospun nanofiberlere genel bir yaklaşımla odaklanmaktadır.

___

  • [1] World Health Organization,”World health statistics” (2020). https://www.who.int/news-room/fact-sheets/detail/cancer [Erişim: 27 Nisan 2023].
  • [2] C.R. UK, “Cancer Treatments.” Cancer Research UK. https://www.cancerresearchuk.org/about-cancer [Erişim: 27 Nisan 2023].
  • [3] American Cancer Society, “Types of Cancer Treatment.” http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/treatment-types-landing. [Erişim: 27 Nisan 2023].
  • [4] National Cancer Institute, “Types of Cancer Treatment” http://www.cancer.gov/about-cancer/treatment/types. [Erişim: 27 Nisan 2023].
  • [5] C. R. UK, “General Side Effects of Hormone Therapy.” https://www.cancerresearchuk.org/about-cancer [Erişim: 27 Nisan 2023].
  • [6] American Cancer Society, “What Is Cancer?,” (2012). https://www.cancer.org/treatment/understanding-your-diagnosis/what-is-cancer.html. [Erişim: 27 Nisan 2023].
  • [7] American Cancer Society, “Cancer Facts and Figures 2019”, (2019). https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.
  • [8] H. Han, X. L. Li, “Multi-resolution independent component analysis for high-performance tumor classification and biomarker discovery,” BMC bioinformatics, (2011), 12, 1, 1-14, doi:10.1186/1471-2105-12-S1-S7
  • [9] J. H. Maeng, D. H.Lee, K. H.Jung, Y. H. Bae, I. S. Park, S. Jeong, , ... S.S. Hong, "Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer," Biomaterials, (2010), 31, 18, 4995-5006. doi: 10.1016/j.biomaterials.2010.02.068
  • [10] V. Trevino, M. G. Tadesse, M.Vannucci, F. Al-Shahrour, P. Antczak, S. Durant, ... F. Falciani, "Analysis of normal-tumour tissue interaction in tumours: prediction of prostate cancer features from the molecular profile of adjacent normal cells." PloS one (2011), 6, 3, e16492, doi: 10.1371/journal.pone.0016492
  • [11] M. F. Maitz, "Applications of synthetic polymers in clinical medicine." Biosurface and Biotribology (2015), 1, 3, 161-176, doi: 10.1016/j.bsbt.2015.08.002
  • [12] T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, "Role of interfaces in two-dimensional photocatalyst for water splitting". ACS Catal. (2018), 8, 2253–2276, doi:10.1021/acscatal.7b03437
  • [13] Z. Sun, L. Zhang, F. Dang, Y. Liu, Z. Fei, Q. Shao, H. Lin, J. Guo, L. Xiang, N. Yerra, Z. Guo, "Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants." CrystEngComm, (2017), 19, 24, 3288-3298, doi: 10.1039/C7CE00279C
  • [14] H. Gu, H. Zhang, J. Lin, Q. Shao, D.P. Young, L. Sun, T.D. Shen, Z. Guo, "Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites." Polymer, (2018), 143, 324-330. doi: 10.1016/j.polymer.2018.04.008
  • [15] B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, Z. Guo, "Two-step hydrothermally synthesized carbon nanodots/WO 3 photocatalysts with enhanced photocatalytic performance." Dalton Transactions, (2017), 46,45, 15769-15777, doi:10.1039/C7DT03003G
  • [16] C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang, Z. Guo, "Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage." Electrochimica Acta, (2018), 260, 65-72, doi:10.1016/j.electacta.2017.11.051
  • [17] C. Wang, B. Mo, Z. He, X. Xie, C.X. Zhao, L. Zhang, Q. Shao, X. Guo, E.K. Wujcik, Z. Guo, "Current applications of electrospun polymeric nanofibers in cancer therapy." Materials Science and Engineering: C, (2019), 97, 966-977, doi:10.1016/j.msec.2018.12.105
  • [18] C. Wang, M. Zhao, J. Li, J. Yu, S. Sun, S. Ge, X. Guo, F. Xie, B. Jiang, E.K. Wujcik, Y. Huang, N. Wang, Z. Guo, "Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites." Polymer, (2017), 131, 263-271. doi:10.1016/j.polymer.2017.10.049
  • [19] C. Wang, Z. He, X. Xie, X. Mai, Y. Li, T. Li, M. Zhao, C. Yan, H. Liu, E.K. Wujcik, Z. Guo, "Controllable cross‐linking anion exchange membranes with excellent mechanical and thermal properties." Macromolecular Materials and Engineering (2018), 303, 3, 1700462, doi: 10.1002/mame.201700462
  • [20] J. Huang, Y. Li, Y. Cao, F. Peng, Y. Cao, Q. Shao, H. Liu, Z. Guo, "Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping." Journal of Materials Chemistry A, (2018), 6, 27, 13062-13074, doi:10.1039/C8TA02861C
  • [21] J. Lin, X. Chen, C. Chen, J. Hu, C. Zhou, X. Cai, W. Wang, C. Zheng, P. Zhang, J. Cheng, Z. Guo, H. Liu, "Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers." ACS applied materials & interfaces (2018), 10, 7, 6124-6136, doi.:10.1021/acsami.7b16235
  • [22] K. Gong, Q. Hu, L. Yao, M. Li, D. Sun, Q. Shao, B. Qiu, Z. Guo, "Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr (VI) removal from wastewater." ACS Sustainable Chemistry & Engineering, (2018), 6, 6, 7283-7291, doi:10.1021/acssuschemeng.7b04421
  • [23] K. Gong, Q. Hu, Y. Xiao, X. Cheng, H. Liu, N. Wang, B. Qiu, Z. Guo, "Triple layered core–shell ZVI@ carbon@ polyaniline composite enhanced electron utilization in Cr (vi) reduction." Journal of Materials Chemistry A, (2018), 6, 24, 11119-11128, doi:10.1039/C8TA03066A
  • [24] K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, R. Fan, D. Cao, Z. Guo, "Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity." Polymer, 2017), 125, 50-57, doi: 10.1016/j.polymer.2017.07.083
  • [25] K. Sun, R. Fan, X. Zhang, Z. Zhang, Z. Shi, N. Wang, P. Xie, Z. Wang, G. Fan, H. Liu, C. Liu, T. Li, C. Yan, Z. Guo, "An overview of metamaterials and their achievements in wireless power transfer." Journal of Materials Chemistry C, (2018), 6, 12, 2925-2943, doi: 10.1039/C7TC03384B
  • [26] L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun, Q. Shao, X. Guo, L. Hao, Y. Zheng, Z. Guo, "Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light." Journal of the Electrochemical Society, (2017), 164,14, H1086, doi: 10.1149/2.0881714jes
  • [27] P. Xie, H. Li, B. He, F. Dang, J. Lin, R. Fan, C. Hou, H. Liu, J. Zhang, Y. Ma, Z. Guo, "Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption." Journal of Materials Chemistry C, (2018), 6, 32, 8812-8822. doi:/10.1039/C8TC02127A
  • [28] P. Xie, Z. Wang, Z. Zhang, R. Fan, C. Cheng, H. Liu, Y. Liu, T. Li, C. Yan, N. Wang, Z. Guo, "Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss." Journal of Materials Chemistry C, (2018), 6,19, 5239-5249, doi:10.1039/C7TC05911F
  • [29] Q. Hou, J. Ren, H. Chen, P. Yang, Q. Shao, M. Zhao, X. Zhao, H. He, N. Wang, Q. Luo, Z. Guo, "Synergistic hematite‐fullerene electron‐extracting layers for improved efficiency and stability in perovskite solar cells." ChemElectroChem, (2018), 5, 5, 726-731, doi:10.1002/celc.201701054
  • [30] Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren, X. Dai, Z. Yao, Y. Zhou, L. Xiang, H. Du, H. He, N. Wang, K. Jiang, H. Lin, H. Zhang, Z. Guo, "All‐carbon‐electrode‐based endurable flexible perovskite solar cells." Advanced Functional Materials, (2018), 28, 11, 1706777, doi:10.1002/adfm.201706777
  • [31] S. Sun, L. Zhu, X. Liu, L. Wu, K. Dai, C. Liu, C. Shen, X. Guo, G. Zheng, Z. Guo, "Superhydrophobic shish-kebab membrane with self-cleaning and oil/water separation properties." ACS Sustainable Chemistry & Engineering, (2018), 6, 8, 9866-9875, doi:10.1021/acssuschemeng.8b01047
  • [32] X. Cui, G. Zhu, Y. Pan, Q. Shao, C. Zhao, M. Dong, Y. Zhang, Z. Guo, "Polydimethylsiloxane-titania nanocomposite coating: fabrication and corrosion resistance." Polymer, (2018), 138, 203-210, doi: 10.1016/j.polymer.2018.01.063
  • [33] X. Lou, C. Lin, Q. Luo, J. Zhao, B. Wang, J. Li, Q. Shao, X. Guo, N. Wang, Z. Guo, "Crystal structure modification enhanced FeNb11O29 anodes for lithium‐ion batteries." ChemElectroChem, (2017), 4,12, 3171-3180, doi: 10.1002/celc.201700816
  • [34] Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gu, Y. Wu, H. Liu, Z. Guo, "Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology." Journal of Materials Chemistry C, (2018), 6, 12, 3004-3015. doi: 10.1039/C8TC00452H
  • [35] Y. He, S. Yang, H. Liu, Q. Shao, Q. Chen, C. Lu, Y. Jiang, C. Liu, Z. Guo, "Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties." Journal of colloid and interface science, (2018), 517, 40-51, doi: 10.1016/j.jcis.2018.01.087
  • [36] Y. Li, T. Jing, G. Xu, J. Tian, M. Dong, Q. Shao, B. Wang, Z. Wang, Y. Zheng, C. Yang, Z. Guo, "3-D magnetic graphene oxide-magnetite poly (vinyl alcohol) nanocomposite substrates for immobilizing enzyme." Polymer, (2018), 149, 13-22, doi:10.1016/j.polymer.2018.06.046
  • [37] Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E.K. Wujcik, Z. Guo, "Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb (II) ions." Polymer, (2017), 128, 12-23, doi:10.1016/j.polymer.2017.09.009
  • [38] Y. Zhang, L. Qian, W. Zhao, X. Li, X. Huang, X. Mai, Z. Wang, Q. Shao, X. Yan, Z. Guo, "Highly efficient Fe-NC nanoparticles modified porous graphene composites for oxygen reduction reaction." Journal of The Electrochemical Society, (2018), 165, 9, H510, doi: 10.1149/2.0991809jes
  • [39] Y. Zhang, M. Zhao, J. Zhang, Q. Shao, J. Li, H. Li, B. Lin, M. Yu, S. Chen, Z. Guo, "Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide." Surface and Coatings Technology, (2017), 317, 1-9, doi:10.1016/j.surfcoat.2017.03.050
  • [40] Z. Hu, D. Zhang, F. Lu, W. Yuan, X. Xu, Q. Zhang, H. Liu, Q. Shao, Z. Guo, Y. Huang, "Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions." Macromolecules, (2018), 51, 14, 5294-5303, doi:10.1021/acs.macromol.8b01124
  • [41] Z. Wu, H. Cui, L. Chen, D. Jiang, L. Weng, Y. Ma, X. Li, X. Zhang, H. Liu, N. Wang, J. Zhang, Y. Ma, M. Zhang, Y. Huang, Z. Guo, "Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent." Composites Science and Technology, (2018), 164, 195-203, doi:10.1016/j.compscitech.2018.05.051
  • [42] Z. Wu, S. Gao, L. Chen, D. Jiang, Q. Shao, B. Zhang, Z. Zhai, C. Wang, M. Zhao, Y. Ma, X. Zhang, L. Weng, M. Zhang, Z. Guo, "Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@ MWCNTs and montmorillonite bifillers." Macromolecular Chemistry and Physics, (2017), 218, 23, 1700357, doi:10.1002/macp.201700357
  • [43] A. Luraghi, F. Peri, L. Moroni, "Electrospinning for drug delivery applications: A review." Journal of Controlled release, (2021), 334, 463-484, doi:10.1016/j.jconrel.2021.03.033
  • [44] M. Zamani, M.P. Prabhakaran, S. Ramakrishna, "Advances in drug delivery via electrospun and electrosprayed nanomaterials", Int. J. Nanomedicine, (2013), 8, 2997–3017.
  • [45] T.J. Sill, H.A. von Recum, "Electrospinning: applications in drug delivery and tissue engineering." Biomaterials, (2008), 29, 13, 1989–2006, doi:10.1016/j.biomaterials.2008.01.011
  • [46] V.J. Mohanraj, Y. Chen, "Nanoparticles-a review." Tropical journal of pharmaceutical research, (2006), 5, 1, 561-573, doi: 10.4314/tjpr.v5i1.14634
  • [47] X. Shan, C. Liu, F. Li, C. Ouyang, Q. Gao, K. Zheng, "Nanoparticles vs. nanofibers: a comparison of two drug delivery systems on assessing drug release performance in vitro." Designed Monomers and Polymers, (2015), 18, 7, 678-689, doi:10.1080/15685551.2015.1070500
  • [48] J.W. Zhao, W.G. Cui. "Functional electrospun fibers for local therapy of cancer." Advanced Fiber Materials, (2020), 2, 229-245, doi: 10.1007/s42765-020-00053-9
  • [49] J.J. Xue, J.W. Xie, W.Y. Liu, Y.N. Xia., "Electrospun nanofibers: new concepts, materials, and applications." Accounts of chemical research, (2017), 50, 8, 1976-1987, doi: 10.1021/acs.accounts.7b00218
  • [50] R.S. Bhattarai, R.D. Bachu, S.H.S. Boddu, S. Bhaduri "Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery." Pharmaceutics, (2018) 11, 1, 5, doi: 10.3390/pharmaceutics11010005
  • [51] X.R. Feng, J.N. Li, X. Zhang, T.J. Liu, J.X. Ding, X.S. Chen. "Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare." Journal of Controlled Release, (2019), 302, 19-41, doi:10.1016/j.jconrel.2019.03.020
  • [52] G Yang, XL Li, Y He, JK Ma, GL Ni, SB. Zhou, "From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications." Progress in Polymer Science, (2018), 81, 80-113, doi:10.1016/j.progpolymsci.2017.12.003
  • [53] R. Nayak, R. Padhye, I.L. Kyratzis, Y.B. Truong, L. Arnold, "Recent advances in nanofibre fabrication techniques." Textile Research Journal,(2012), 82, 2, 129-147, doi: 10.1177/0040517511424524
  • [54] L. Li, R. Hao, J. Qin, J. Song, X. Chen, F. Rao, J. Zhai, Y. Zhao, L. Zhang, J. Xue, "Electrospun fibers control drug delivery for tissue regeneration and cancer therapy." Advanced Fiber Materials (2022), 4, 1375-1413, doi:10.1007/s42765-022-00198-9
  • [55] J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, "Electrospinning and electrospun nanofibers: Methods, materials, and applications." Chemical reviews, (2019), 119, 8, 5298-5415, doi:10.1021/acs.chemrev.8b00593
  • [56] Y. Sun, S. Cheng, W. Lu, Y. Wang, P. Zhang, Q. Yao. "Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization." RSC advances, (2019), 9,44, 25712-25729, doi: 10.1039/C9RA05012D
  • [57] Y. O., Mostafa, K. A., Abed, , N. A. H., El Mahallawy, M., Sorour, M. El Bayoumi, "The effect of microwave irradiation on morphological and mechanical characteristics of nano silica loaded PVDF hollow fiber membranes." Egyptian Journal of Chemistry, (2022), 65,13, 735 – 744, doi: 10.21608/EJCHEM.2022.145444.6338
  • [58] https://www.nanoscience.com/applications/electrospun-nanofiber-orientation [Erişim: 27 Nisan 2023].
  • [59] S. Sundarrajan, K.L. Tan, S.H. Lim, S. Ramakrishna, "Electrospun nanofibers for air filtration applications." Procedia Engineering, (2014), 75, 159-163, doi:10.1016/j.proeng.2013.11.034
  • [60] S.A.A.N. Nasreen, S. Sundarrajan, S.A. Syed Nizar, R. Balamurugan, S. Ramakrishna, "In situ polymerization of PVDF-HEMA polymers: electrospun membranes with improved flux and antifouling properties for water filtration." Polymer journal, (2014), 46, 3, 167-174, doi:10.1038/pj.2013.79
  • [61] J. Lannutti, D. Reneker, T. Ma, D. Tomasko, D. Farson, "Electrospinning for tissue engineering scaffolds." Materials Science and Engineering: C, (2007), 27,3, 504-509, doi:10.1016/j.msec.2006.05.019
  • [62] S. Abid, T. Hussain, A. Nazir, A. Zahir, N. Khenoussi, "Acetaminophen loaded nanofibers as a potential contact layer for pain management in Burn wounds." Materials Research Express, (2018), 5, 8, 085017, doi:10.1088/2053-1591/aad2eb
  • [63] Y.F. Goh, I. Shakir, R. Hussain, "Electrospun fibers for tissue engineering, drug delivery, and wound dressing." Journal of Materials Science, (2013), 48, 3027-3054, doi.org/10.1007/s10853-013-7145-8
  • [64] J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, "Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization." ACS applied materials & interfaces, (2013), 5, 15, 7410-7416, doi:10.1021/am4017347
  • [65] S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, R. Ramaseshan, "Electrospun nanofibers: solving global issues." Materials today, (2006), 9, 3, 40-50, doi:10.1016/S1369-7021(06)71389-X
  • [66] Y. Dai, W. Liu, E. Formo, Y. Sun, Y. Xia, "Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology." Polymers for Advanced Technologies, (2011), 22, 3, 326-338, doi:10.1002/pat.1839
  • [67] J. Miao, M. Miyauchi, T.J. Simmons, J.S. Dordick, R.J. Linhardt, "Electrospinning of nanomaterials and applications in electronic components and devices." Journal of nanoscience and nanotechnology, (2010), 10,9, 5507-5519, doi:10.1166/jnn.2010.3073
  • [68] L. Ji, X. Zhang, "Electrospun carbon nanofibers containing silicon particles as an energy-storage medium." Carbon, (2009), 47,14, 3219-3226, doi:10.1016/j.carbon.2009.07.039
  • [69] N.G. Rim, C.S. Shin, H. Shin, "Current approaches to electrospun nanofibers for tissue engineering." Biomedical materials, 8, 1 (2013), 8, 1, 014102, doi:10.1088/1748-6041/8/1/014102
  • [70] F. Zhang, Z. Zhang, T. Zhou, Y. Liu, J. Leng, "Shape memory polymer nanofibers and their composites: electrospinning, structure, performance, and applications." Frontiers in Materials, 2, (2015), 2, 62, 1-10, doi:10.3389/fmats.2015.00062
  • [71] R. Sridhar, S. Sundarrajan, J.R. Venugopal, R. Ravichandran, S. Ramakrishna, "Electrospun inorganic and polymer composite nanofibers for biomedical applications." Journal of Biomaterials Science, Polymer Edition, (2013), 24, 4, 365-385, doi:10.1080/09205063.2012.690711
  • [72] X. Luo, C. Xie, H. Wang, C. Liu, S. Yan, X. Li, "Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation." International journal of pharmaceutics, (2012), 425, 1-2, 19-28, doi:10.1016/j.ijpharm.2012.01.012
  • [73] S. Cheng, Y. Du, B. Ma, D. Tan, "Total synthesis of a furostan saponin, timosaponin BII." Organic & Biomolecular Chemistry, (2009), 7,15, 3112-3118, doi:10.1039/B905091D
  • [74] B.D. Weinberg, E. Blanco, J. Gao, "Polymer implants for intratumoral drug delivery and cancer therapy." Journal of pharmaceutical sciences, (2008), 97, 5, 1681-1702, doi:10.1002/jps.21038
  • [75] S.M. Moghimi, A.C. Hunter, J.C. Murray, "Long-circulating and target-specific nanoparticles: theory to practice." Pharmacological reviews, (2001), 53, 2, 283-318.
  • [76] A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, "Poly-lactic acid synthesis for application in biomedical devices—A review." Biotechnology advances, (2012), 30,1, 321-328, doi:10.1016/j.biotechadv.2011.06.019
  • [77] J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen, X. Jing, "Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation." Journal of controlled release, (2005), 105,1-2, 43-51, doi:10.1016/j.jconrel.2005.02.024
  • [78] P. Chen, Q. Wu, Y. Ding, M. Chu, Z. Huang, W. Hu, "A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro." European Journal of Pharmaceutics and Biopharmaceutics, (2010), 76, 3, 413-420, doi:10.1016/j.ejpb.2010.09.005
  • [79] E. Thangaraju, N.T. Srinivasan, R. Kumar, P.K. Sehgal, S. Rajiv, "Fabrication of electrospun poly l-lactide and curcumin loaded poly l-lactide nanofibers for drug delivery." Fibers and Polymers, (2012), 13, 823-830, doi:10.1007/s12221-012-0823-3
  • [80] Z. Zhang, S. Liu, Y. Qi, D. Zhou, Z. Xie, X. Jing, X. Chen, Y. Huang, "Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery." Journal of Controlled Release, (2016), 235, 125-133, doi:10.1016/j.jconrel.2016.05.046
  • [81] K. Qiu, C. He, W. Feng, W. Wang, X. Zhou, Z. Yin, L. Chen, H. Wang, X. Mo, "Doxorubicin-loaded electrospun poly (L-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment." Journal of Materials Chemistry B, (2013), 1, 36, 4601-4611, doi:10.1039/C3TB20636J
  • [82] X. Xu, X. Chen, X. Xu, T. Lu, X. Wang, L. Yang, X. Jing, "BCNU-loaded PEG–PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells." Journal of controlled release, (2006), 114, 3, 307-316, doi:10.1016/j.jconrel.2006.05.031
  • [83] M.G. Ignatova, N.E. Manolova, R.A. Toshkova, I.B. Rashkov, E.G. Gardeva, L.S. Yossifova, M.T. Alexandrov, "Electrospun nanofibrous mats containing quaternized chitosan and polylactide with in vitro antitumor activity against HeLa cells." Biomacromolecules, (2010), 11, 6, 1633-1645, doi:10.1021/bm100285n
  • [84] M. Ignatova, L. Yossifova, E. Gardeva, N. Manolova, R. Toshkova, I. Rashkov, M. Alexandrov, "Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against MCF-7 human breast carcinoma cell line by apoptosis." Journal of bioactive and compatible polymers, (2011), 26, 6, 539-551, doi:10.1177/0883911511424655
  • [85] R. Toshkova, N. Manolova, E. Gardeva, M. Ignatova, L. Yossifova, I. Rashkov, M. Alexandrov, "Antitumor activity of quaternized chitosan-based electrospun implants against Graffi myeloid tumor." International journal of pharmaceutics, (2010), 400, 1-2, 221-233, doi:10.1016/j.ijpharm.2010.08.039
  • [86] M. Hasegawa, K. Yagi, S. Iwakawa, M. Hirai, "Chitosan induces apoptosis via caspase‐3 activation in bladder tumor cells." Japanese journal of cancer research, (2001), 92, 4, 459-466, doi:10.1111/j.1349-7006.2001.tb01116.x
  • [87] J. Wei, J., Hu, M., Li, Y., Chen, Y. Chen, "Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment." RSC advances, (2014), 4, 53, 28011-28019, doi:10.1039/C4RA03722G
  • [88] P. Vashisth, N. Kumar, M. Sharma, V. Pruthi, "Biomedical applications of ferulic acid encapsulated electrospun nanofibers." Biotechnology Reports, (2015), 8, 36-44, doi:10.1016/j.btre.2015.08.008
  • [89] R. Sridhar, S. Ravanan, J.R. Venugopal, S. Sundarrajan, D. Pliszka, S. Sivasubramanian, P. Gunasekaran, M. Prabhakaran, K. Madhaiyan, A. Sahayaraj, K.H.C. Lim, S. Ramakrishna, "Curcumin-and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: in vitro efficacy evaluation." Journal of Biomaterials Science, Polymer Edition, (2014), 25, 10, 985-998, doi:10.1080/09205063.2014.917039
  • [90] S.T. Yohe, V.L.M. Herrera, Y.L. Colson, M.W. Grinstaff, "3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells." Journal of controlled release, (2012), 162, 1, 92-101, doi:10.1016/j.jconrel.2012.05.047
  • [91] S. Fu, L. Zhou, H. Liang, M. Fan, F. Luo, Z. Qian, Y. Wei, "Preparation of curcumin loaded poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells." Nanoscale, (2011), 3, 9, 3825-3832, doi:10.1039/C1NR10484E
  • [92] S. Liu, Z. Hou, P. Ma, D. Yang, C. Li, J. Lin, "Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo." Nano Research, (2015), 8, 1917-1931, doi:10.1007/s12274-014-0701-y
  • [93] L. Li, G. Yang, J. Li, C. Luo, T. Gong, S. Zhou, "Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers." International journal of pharmaceutics, (2011), 421, 2, 310-320., doi:10.1016/j.ijpharm.2011.09.033
  • [94] B. Ardeshirzadeh, N.A. Anaraki, M. Irani, L.R. Rad, S. Shamshiri, "Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds." Materials Science and Engineering: C, (2015), 48, 384-390, doi:10.1016/j.msec.2014.12.039
  • [95] Y.J. Kim, H.I. Bae, O.K. Kwon, M.S. Choi, "Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test." International journal of biological macromolecules, (2009), 45, 1, 65-71, doi:10.1016/j.ijbiomac.2009.04.003
  • [96] C. Yang, L. Chu, Y. Zhang, Y. Shi, J. Liu, Q. Liu, S. Fan, Z. Yang, D. Ding, D. Kong, J. Liu, "Dynamic biostability, biodistribution, and toxicity of L/D-peptide-based supramolecular nanofibers." ACS applied materials & interfaces, (2015), 7, 4, 2735-2744, doi:10.1021/am507800e
  • [97] G. Ma, Y. Liu, C. Peng, D. Fang, B. He, J. Nie, "Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer." Carbohydrate polymers, (2011), 86, 2, 505-512, doi:10.1016/j.carbpol.2011.04.082
  • [98] X. Zhou, Q. Saiding, X. Wang, J. Wang, W. Cui, X. Chen. "Regulated Exogenous/Endogenous Inflammation via “Inner‐Outer” Medicated Electrospun Fibers for Promoting Tissue Reconstruction." Advanced healthcare materials, (2022), 11, 10, 2102534, doi:10.1002/adhm.202102534
  • [99] S. Municoy, M.I.A. Echazu, P.E. Antezana, J.M. Galdoporpora, C. Olivetti, A.M. Mebert, M.L. Foglia, M.V. Tuttolomondo, G.S. Alvarez, J.G. Hardy, M.F. Desimone. "Stimuli-responsive materials for tissue engineering and drug delivery." International Journal of Molecular Sciences, (2020), 21, 13, 4724, doi:10.3390/ijms21134724
  • [100] D. Mertz, S. Harlepp, J. Goetz, D. Begin, G. Schlatter, S. Begin-Colin, A. Hebraud. "Nanocomposite polymer scaffolds responding under external stimuli for drug delivery and tissue engineering applications." Advanced Therapeutics, (2020), 3, 2, 1900143, doi:10.1002/adtp.201900143
  • [101] M. Morey, A. Pandit. "Responsive triggering systems for delivery in chronic wound healing." Advanced drug delivery reviews, (2018), 129, 169-193, doi:10.1016/j.addr.2018.02.008
  • [102] L. Williams, F.L. Hatton, H. Willcock, E. Mele. "Electrospinning of stimuli‐responsive polymers for controlled drug delivery: pH‐and temperature‐driven release." Biotechnology and Bioengineering, (2022), 119, 5, 1177-1188, doi:10.1002/bit.28043
  • [103] L. Tu, Z. Liao, Z. Luo, Y.L. Wu, A. Herrmann, S. Huo. "Inside Front Cover: Ultrasound‐controlled drug release and drug activation for cancer therapy (EXP2 3/2021)." Exploration, (2021),1, 3, doi:10.1002/EXP.20210023
  • [104] S. Demirci, A. Celebioglu, Z. Aytac, T. Uyar. "pH-responsive nanofibers with controlled drug release properties." Polymer Chemistry, (2014), 5, 6, 2050-2056, doi:10.1039/C3PY01276J
  • [105] R.Y. Zhang, E. Zaslavski, G. Vasilyev, M. Boas, E. Zussman. "Tunable pH-responsive chitosan-poly (acrylic acid) electrospun fibers." Biomacromolecules, (2018), 19, 2, 588-595, doi:10.1021/acs.biomac.7b01672
  • [106] J. Schoeller, F. Itel, K. Wuertz-Kozak, G. Fortunato, R.M. Rossi. "pH-responsive electrospun nanofibers and their applications." Polymer Reviews, (2022), 62, 2, 351-399, doi:10.1080/15583724.2021.1939372
  • [107] Y. Liu, R. Song, X. Zhang, D. Zhang. "Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin." International Journal of Biological Macromolecules, (2020), 161, 1405-1413, doi:10.1016/j.ijbiomac.2020.08.051
  • [108] K. Xi, Y. Gu, J. Tang, H. Chen, Y. Xu, L. Wu, F. Cai, L. Deng, H. Yang, Q. Shi, W. Cui, L. Chen. "Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery." Nature communications, (2020), 11,1, 4504, doi:10.1038/s41467-020-18265-3
  • [109] J. Zhao, S Liu, B Li, H Yang, C Fan, W. Cui, ‘’Stable acid-responsive electrospun biodegradable fibers as drug carriers and cell scaffolds,’’ Macromol Biosci, (2013), 7, 885-892, doi:10.1002/mabi.201200452.
  • [110] X. Zhao, Z. Yuan, L. Yildirimer, J. Zhao, Z.Y. Lin, Z. Cao, G. Pan, W. Cui. "Tumor‐triggered controlled drug release from electrospun fibers using inorganic caps for inhibiting cancer relapse." Small, (2015), 11, 34, 4284-4291, doi: 10.1002/smll.201500985
  • [111] F. Qi, Y. Chang, R. Zheng, X. Wu, Y. Wu, B. Li, T. Sun, P. Wang, H. Zhang, H. Zhang. "Copper phosphide nanoparticles used for combined photothermal and photodynamic tumor therapy." ACS Biomaterials Science & Engineering, (2021), 7, 6, 2745-2754, doi:10.1021/acsbiomaterials.1c00189
  • [112] Y. Yang, D. Zhu, Y. Liu, B. Jiang, W. Jiang, X. Yan, K. Fan. "Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy." Nanoscale, (2020), 12, 25, 13548-13557, doi:10.1039/D0NR02800B
  • [113] X. Hou, Y. Tao, Y. Pang, X. Li, G. Jiang, Y. Liu. "Nanoparticle‐based photothermal and photodynamic immunotherapy for tumor treatment." International journal of cancer, (2018), 143, 12, 3050-3060, doi:10.1002/ijc.31717
  • [114] J. Xiao, L. Cheng, T. Fang, Y. Zhang, J. Zhou, R. Cheng, W. Tang, X. Zhong, Y. Lu, L. Deng, Y. Cheng, Y. Zhu, Z. Liu, W. Cui. "Nanoparticle‐embedded electrospun fiber–covered stent to assist intraluminal photodynamic treatment of oesophageal cancer." Small, (2019), 15, 49, 1904979, doi:10.1002/smll.201904979
  • [115] X. Liu, H. Zhang, R. Cheng, Y. Gu, Y. Yin, Z. Sun, G. Pan, Z. Deng, H. Yang, L. Deng, W. Cui, H.A. Santos, Q. Shi. "An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration." Materials horizons, (2018), 5, 6, 1082-1091, doi: 10.1039/C8MH00704G
  • [116] Q. Yu, Y. Han, X. Wang, C. Qin, D. Zhai, Z. Yi, J. Chang, Y. Xiao, C.Wu. "Copper silicate hollow microspheres-incorporated scaffolds for chemo-photothermal therapy of melanoma and tissue healing." ACS nano, (2018), 12, 3, 2695-2707, doi:10.1021/acsnano.7b08928
  • [117] V. Plaks, C.D. Koopman, Z. Werb. "Circulating tumor cells." Science, (2013), 341, 6151, 1186-1188, doi:10.1126/science.1235226
  • [118] S. Hou, L. Zhao, Q. Shen, J. Yu, C. Ng, X. Kong, D. Wu, M. Song, X. Shi, X. Xu, W.H. Ou Yang, R. He, X.Z. Zhao, T. Lee, F.C. Brunicardi, M.A. Garcia, A. Ribas, R.S. Lo, H.R. Tseng. "Polymer nanofiber‐embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells." Angewandte Chemie, (2013), 125, 12, 3463-3467, doi:10.1002/ange.201208452
  • [119] P.R. Patel, R.V.N. Gundloori. "A review on electrospun nanofibers for multiple biomedical applications." Polymers for Advanced Technologies, (2023), 34(1), 44-63, doi:10.1002/pat.5896
  • [120] L. Li, X. Zhang, J. Zhou, L. Zhang, J. Xue, W. Tao. "Non‐Invasive Thermal Therapy for Tissue Engineering and Regenerative Medicine." Small, (2022), 18, 36, 2107705, doi:10.1002/smll.202107705
  • [121] D. Sun, Z.Y. Zhang, M.Y. Chen, Y.P. Zhang, J. Amagat, S.F. Kang, Y.Y. Zheng, B. Hu, M.L. Chen. "Co-immobilization of Ce6 sono/photosensitizer and protonated graphitic carbon nitride on PCL/gelation fibrous scaffolds for combined sono-photodynamic cancer therapy." ACS Applied Materials & Interfaces, (2020), 12, 36, 40728-40739, doi:10.1021/acsami.0c08446
  • [122] M. Nikolaou, K. Avraam, A. Kolokithas-Ntoukas, A. Bakandritsos, F. Lizal, O. Misik, M. Maly, J. Jedelsky, I. Savva, F. Balanean, T. Krasia-Christoforou. "Superparamagnetic electrospun microrods for magnetically-guided pulmonary drug delivery with magnetic heating." Materials Science and Engineering, (2021), 126, 112117, doi:10.1016/j.msec.2021.112117
  • [123] H.M. Chen, J.F. Sun, Z.B. Wang, Y. Zhou, Z.C. Lou, B. Chen, P. Wang, Z.R. Guo, H. Tang, J.Q. Ma, Y. Xia, N. Gu, F.M. Zhang. "Magnetic cell–scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells." ACS applied materials & interfaces, (2018), 10, 51, 44279-44289, doi:10.1021/acsami.8b17427
  • [124] C.D.L. Johnson, D. Ganguly, J.M. Zuidema, T.J. Cardina, A.M. Ziemba, K.R. Kearns, S.M. McCarthy, D.M. Thompson, G. Ramanath, D.A. Borca-Tasciuc, S. Dutz, R.J Gilbert. "Injectable, magnetically orienting electrospun fiber conduits for neuron guidance." ACS applied materials & interfaces, (2018), 11, 1, 356-372, doi:10.1021/acsami.8b18344
  • [125] Y.J. Kim, M. Ebara, T. Aoyagi. "A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis." Advanced Functional Materials, (2013), 23, 46, 5753-5761, doi:10.1002/adfm.201300746
  • [126] F. Ercole, T. P. Davis, & R. A. Evans, ‘’Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond,’’ Polymer Chemistry, (2010), 1(1), 37-54, Doi:10.1039/B9PY00300B.
  • [127] W. Xiao, W. H. Chen, X. D. Xu, C. Li, J. Zhang, R. X. Zhuo, & X. Z. Zhang, ‘’Design of a Cellular‐Uptake‐Shielding “Plug and Play” Template for Photo Controllable Drug Release,’’ Advanced Materials, (2011), 23(31), 3526-3530, doi.org/10.1002/adma.201101806.
  • [128] X. Xu, Z. Zeng, Z. Huang, Y. Sun, Y. Huang, J. Chen, & C. Zhao, ‘’Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy,’’ Carbohydrate Polymers, (2020), 229, 115394, doi.org/10.1016/j.carbpol.2019.115394.
  • [129] P. Husni, Y. Shin, J. C. Kim, K Kang, E. S. Lee, Y. S. Youn, ... & K. T. Oh, ‘’Photo-based nanomedicines using polymeric systems in the field of cancer imaging and therapy,’’ Biomedicines, (2020), 8(12), 618, doi.org/10.3390/biomedicines8120618.
  • [130] A. GhavamiNejad, A.R.K. Sasikala, A.R. Unnithan, R.G. Thomas, Y.Y. Jeong, M. Vatankhah-Varnoosfaderani, F.J. Stadler, C.H. Park, C.S. Kim, ‘’Mussel-Inspired Electrospun Smart Magnetic Nanofibers for Hyperthermic Chemotherapy,’’ Adv. Funct. Mater., (2015), 25(19), 2867-2875, doi.org/10.1002/adfm.201500389.
  • [131] A.R.K. Sasikala, A.R. Unnithan, Y-H. Yun, C.H. Park, C.S. Kim, ‘’An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release,’’ Acta Biomater., (2016), 31,122-123, doi.org/10.1016/j.actbio.2015.12.015.
  • [132] S. Federico, A. Martorana, G. Pitarresi, F.S. Palumbo, C. Fiorica, G. Giammona, ‘’Development of stimulus-sensitive electrospun membranes based on novel biodegradable segmented polyurethane as triggered delivery system for doxorubicin,’’ Biomater. Adv., (2022), 136, 212769, doi.org/10.1016/j.bioadv.2022.212769.
  • [133] R. Krishnan, S. Sundarrajan, S. Ramakrishna, "Green processing of nanofibers for regenerative medicine." Macromolecular Materials and Engineering, (2013), 298, 10, 1034-1058, doi:10.1002/mame.201200323.
  • [134] M. A. A. Khalek, S. A. A. Gaber, El- R. A. Domany, M. A. El-Kemary, ‘Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing.’ International Journal of Biological Macromolecules, (2021), 193, 1752-1766, doi.org/10.1016/j.ijbiomac.2021.11.012.
  • [135] E. Jaisankar, R. S. Azarudeen, M. Thirumarimurugan, ‘Nanoparticle-mediated polycaprolactone based nanofiber mats for enhanced apoptosis of breast cancer cell line with improved cell viability of fibroblast cell line: Controlled drug release and antimicrobial assay’, Journal of Drug Delivery Science and Technology, (2023), 84, 104451, doi.org/10.1016/j.jddst.2023.104451.
  • [136] D. Babadi, S. Dadashzadeh, Z. Shahsavari, S. Shahhosseini, T. Ten Hagen, L., A. Haeri, ‘Piperine-loaded electrospun nanofibers, an implantable anticancer controlled delivery system for postsurgical breast cancer treatment’, International Journal of Pharmaceutics, (2022), 624, 121990, doi.org/10.1016/j.ijpharm.2022.121990.
  • [137] A. Mamun, L. Sabantina, ‘Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications—Technology, Mechanism, and Materials’. Polymers, (2023), 15(8), 1902, doi.org/10.3390/polym15081902