Bis(4-florobenzil) pendant kollu tetraspirosiklotetrafosfazenlerin sentezi ve spektral karakterizayonu

Oktaklorosiklotetrafosfazen, N4P4Cl8 (1)' in klor atomlarının iki eş molar miktarda N-(4-florobenzil)-N'-etiletan-1,2-diamin ile kuru THF içindeki değişim reaksiyonları 4,4,8,8-tetrakloro-2-trans-6-bis-N-(4-florobenzil)-N'-etiletan-1,2-diaminosiklotetrafosfazen (2) oluşumu ile sonuçlandı. Başlangıç bileşiği 2' nin aşırı miktarda sodyum 2,2-dimetil-1,3-propandioksit ve 3-amino-1-propanoksit ile Cl sübstitüsyon reaksiyonları, sırasıyla bis(2,2-dimetil-1,3-propandioksi) (2a) ve 4-trans/cis-8-bis(3-amino-1-propanoksi) (trans/cis 2b) 2-trans-6-bis(4-florobenzil)spirosiklotetrafosfazenleri verdi. Tetraspiro ürünlerinin (2a ve trans/cis 2b) yapıları, element analizi, kütle spektrometrisi (ESI-MS), FTIR, 1H, 13C {1H} ve 31P {1H} NMR spektroskopisi kullanılarak doğrulandı. Öte yandan, üç bileşiğin (2a ve trans/cis 2b) uzaysal iskeletlerindeki iki beş üyeli ve iki altı üyeli halkanın olası konformasyonu dikkate alınmalıdır. Anlaşıldığı üzere, bu yapılar, dört spiro halkanın yönelimine bağlı olarak düşük sıcaklıkta ve muhtemelen oda sıcaklığında kararlı konformasyonel izomerler olarak var olabilir. Bu yapılar ayrıca düşük sıcaklıkta yapısal olarak kilitli izomerler oluşturabilir.

Syntheses and spectral characterizations of tetraspirocyclotetraphosphazenes containing bis(4-fluorobenzyl) pendant arms

The Cl exchange reactions of octachlorocyclotetraphosphazene, N4P4Cl8 (1), with two equimolar amounts of N-(4-fluorobenzyl)-N'-ethylethane-1,2-diamine resulted in the formation of 4,4,8,8-tetrachloro-2-trans-6-bis-N-(4-fluorobenzyl)-N'-ethylethane-1,2-diaminocyclotetraphosphazene (2) in dry THF. The Cl substitution reactions of the starting compound 2 with excess amounts of sodium 2,2-dimethyl-1,3-propandioxide and 3-amino-1-propanoxide gave the bis(2,2-dimethyl-1,3-propandioxy) (2a) and 4-trans/cis-8-bis(3-amino-1-propanoxy) (trans/cis 2b) 2-trans-6-bis(4-fluorobenzyl)spirocyclotetra phosphazenes, respectively. The structures of tetraspiro products (2a and trans/cis 2b) were verified using elemental analyses, mass spectrometry (ESI-MS), FTIR, 1H, 13C {1H} and 31P {1H} NMR spectroscopy. On the other hand, the possible conformation of the two five-membered and two six-membered rings in the spatial skeletons of the three compounds (2a and trans/cis 2b) ought to be considered. As it turns out, these structures can exist as stable conformational isomers at low temperature and possibly room temperature, depending on the orientation of the four spiro rings. These structures can also form structurally locked isomers at low temperatures.

___

  • REFERENCES
  • [1] Chandrasekhar, V., and Chakraborty, A., “Phosphazenes”, Organophosphorus Chemistry, Royal Society of Chemistry, (2020), 49, 349-376.
  • [2] Uslu, A., and Yeşilot, S., “Recent advances in the supramolecular assembly of cyclophosphazene derivatives”, Dalton Transaction, (2021), DOI: 10.1039/D0DT04095A.
  • [3] Binici, A., Okumuş, A., Elmas, G., Kılıç, Z., Ramazanoğlu, N., Açık, L., Şimşek, H., Tunalı, B. Ç., Türk, M., Güzel, R., and Hökelek, T.,” Phosphorus–nitrogen compounds. Part 42. The comparative syntheses of 2-cis-4-ansa(N/O) and spiro(N/O) cyclotetraphosphazene derivatives: spectroscopic and crystallographic characterization, antituberculosis and cytotoxic activity studies”, New Journal of Chemistry, (2019), 43, 6856-6873.
  • [4] Elmas, G., “Syntheses and structural characterizations of 2-pyridyl(N/O) spirocyclotriphosphazene derivatives”, Phosphorus, Sulfur, and Silicon and The Related Elements, (2019), 194 (1-2), 13-24.
  • [5] Elmas, G., Okumuş, A., Kılıç, Z., Çam, M., Açık, L. and Hökelek, T., “Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities”, Inorganica Chima Acta, (2018) 476, 110-122.
  • [6] Chandrasekhar, V. and Narayanan, R. S., “Phosphazenes”, Organophosphorus Chemistry, Royal Sciety of Chemistry, (2017), 46, 342-417.
  • [7] Okumuş, A., Elmas, G., Kılıç, Z., Ramazanoğlu, N., Açık, L., Türk, M. and Akça, G., “The reactions of N3P3Cl6 with monodentate and bidentate ligands: The syntheses and structural characterizations, in vitro antimicrobial activities and DNA interactions of 4-fluorobenzyl(N/O) spirocyclotriphosphazenes”, Turkish Journal of Chemistry, (2017), 41, 525-547.
  • [8] Elmas, G., Okumuş, A., Cemaloğlu, R., Kılıç, Z., Çelik, S. P., Açık, L., Tunalı, B. Ç., Türk, M., Çerçi, N. A., Güzel, R. and Hökelek, T., “Phosphorus-Nitrogen Compounds. Part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms”, Journal of Organometallic Chemistry, (2017), 853, 93-106.
  • [9] Chandrasekhar, V. and Chakraborty, A., “Phosphazenes”, Organophosphorus Chemistry, Royal Sciety of Chemistry, (2019), 48, 400-423.
  • [10] Elmas, G., “Syntheses and spectroscopic investigations of 2-pyridyl(N/N)spiro cyclotriphosphazenes”, Journal of the Turkish Chemical Society, Section A: Chemistry, (2018), 5 (2), 621-634.
  • [11] Okumuş, A., Elmas, G., Kılıç, Z., Binici, A., Ramazanoğlu, N., Açık, L., Çoşut, B., Hökelek, T., Güzel, R., Tunalı, B. Ç., Türk, M. and Şimşek, H., “The comparative reactions of 2‐cis‐4‐ansa and spiro cyclotetraphosphazenes with difunctional ligands: Structural and stereogenic properties, electrochemical, antimicrobial and cytotoxic activity studies”, Applied Organometallic Chemistry, (2021), 35 (4), e6150, DOI: 10.1002/aoc.6150.
  • [12] Okumuş, A., Akbaş, H., Karadağ, A., Aydın, A., Kılıç, Z. and Hökelek, T., “Antiproliferative effects against A549, Hep3B and FL cell lines of cyclotriphosphazene‐based novel protic molten salts: Spectroscopic, crystallographic and thermal results”, Chemistry Select, (2017), 2, 4988-4999.
  • [13] Mucur, S. P., Canımkurbey, B., Kavak, P., Akbaş, H. and Karadağ, A., “Charge carrier performance of phosphazene-based ionic liquids doped hole transport layer in organic light-emitting diodes”, Applied Physics A, (2020), 126 (12), 1-14.
  • [14] Harrup, M. K., Gering, K. L., Rollins, H. W., Sazhin, S. V., Benson, M. T., Jamison, D. K., Michelbacher, C. J. and Luther, T. A., “Phosphazene based additives for ımprovement of safety and battery lifetimes in lithium-ion batteries”, ESC Transaction, (2012), 41, 13-25.
  • [15] Selberg, S., Pagano, T., Tshepelevitsh, S., Haljasorg, T., Vahur, S., Luik, J., Saame, J. and Leito, I., “Synthesis and photophysics of a series of lipophilic phosphazene‐based fluorescent indicators”, Journal of Physical Organic Chemistry, (2019), 32 (7), e3950.
  • [16] Singh, R. K., Kukrety, A., Saxena, R. C., Chouhan, A., Jain, S. L. and Ray, S. S., “Phosphazene-based novel organo-inorganic hybrid salt: synthesis, characterization and performance evaluation as multifunctional additive in polyol”, RSC Advances, (2017), 7, 13390-13397.
  • [17] Greish, Y. E., Bender, J. D., Lakshmi, S., Brown, P. W., Allcock, H. R. and Laurencin, C. T., “Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications”, Biomaterials, (2005), 26, 1-9.
  • [18] Caminade A. M., Hameauaand A. and Majorala J. P., “The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers”, Dalton Transaction, (2015), 45, 1810-1822.
  • [19] Wang L., Yang Y. X., Shi X., Mignani S., Caminde A. M. and Majoral J. P., “Cyclotriphosphazene core-based dendrimers for biomedical applications: an update
on recent advances”, Journal of Materials Chemistry B, (2018), 6, 884-895.
  • [20] Nair, L., Bhattacharyya, S., Bender, J. D., Greish, Y. E., Brown, P. W., Allcock, H. And Laurencin, C. T., Biomacromolecules, (2004), 5, 2212-2220.
  • [21] Elmas, G., Okumuş, A., Kılıç, Z., Çelik, S. P. and Açık, L., “The spectroscopic and thermal properties, antibacterial and antifungal activity and DNA interactions of 4-(fluorobenzyl)spiro(N/O) cyclotriphosphazenium salts”, Journal of the Turkish Chemical Society, Section A: Chemistry, (2017), 4 (3), 993-1016.
  • [22] Andrianov, A. K., Marin, A. and Chen, J., “Synthesis, Properties, and Biological Activity of Poly[di(sodium carboxylatoethylphenoxy)phosphazene], Biomacromolecules, (2006), 7 (1), 394-399.
  • [23] Elmas, G., Kılıç, Z., Çoşut, B., Keşan, G., Açık, L., Çam, M., Tunalı B. Ç., Türk, M. and Hökelek, T., “Synthesis of Bis(2,2,3,3-tetrafluoro-1,4-butanedialkoxy)-2-trans-6-bis(4-fluorobenzyl)spiro cyclotetraphosphazene: Structural Characterization, Biological Activity and DFT Studies”, Journal of Chemical Crystallography, (2020), 51 (2), 235-250. DOI 10.1007/s10870-020-00851-4.
  • [24] Elmas, G., Okumuş, A., Sevinç, P., Kılıç, Z., Açık, L., Atalan, M., Türk, M., Deniz, G. and Hökelek T., “Phosphorus-nitrogen compounds. Part 37. Syntheses and structural characterizations, biological activities of mono and bis(4-fluorobenzyl)spirocyclotetraphosphazenes”, New Journal of Chemistry, (2017), 41, 5818-5835.
  • [25] Bruker program 1D WIN-NMR (release 6.0) and 2D WIN-NMR (release 6.1).
  • [26] Elmas, G., “The reactions of 2-trans-6-bis(4-fluorobenzyl)spirocyclotetraphosphazene with primary amines: spectroscopic and crystallographic characterizations”, Phosphorus, Sulfur, and Silicon and The Related Elements, (2017), 192 (11), 1224-1232.
  • [27] Egemen, G., Hayvalı, M., Kılıç, Z., Solak, A. O. and Üstündağ, Z., “Phosphorus-nitrogen compounds. Part 17. The synthesis, spectral and electrochemical investigations of porphyrinophosphazenes”, Journal of Porphyrins Phthalocyanines, (2010), 14, 227-234.
  • [28] Elmas, G., Okumuş, A., Kılıç, Z., Özbeden, P., Açık, L., Tunalı, B. Ç., Türk, M., Çerçi, N. A. and Hökelek, T., “Phosphorus-nitrogen compounds. Part 48. Syntheses of the phosphazenium salts containing 2-pyridyl pendant arm: Structural characterizations, thermal analysis, antimicrobial and cytotoxic activity studies”, Indian Journal of Chemistry Section A, (2020), 59A, 533-550.
  • [29] Elmas, G., Okumuş, A., Hökelek, T. and Kılıç, Z., “Phosphorus-nitrogen compounds. Part 52. The reactions of octachlorocyclotetraphosphazene with sodium 3-(N-ferrocenylmethylamino)-1-propanoxide: Investigations of spectroscopic, crystallographic and stereogenic properties”, Inorganica Chimica Acta, (2019), 497, 119106.