Tuz stresi altındaki mısır fidelerine aseton o-(4 klorofenilsülfonil) oksim ön uygulamasının biyokimyasal parametreler üzerine etkilerinin araştırılması

Mevcut çalışmanın temel amacı, tuz stresi altındaki mısır fidelerine aseton O-(4 klorofenilsülfonil) oksim (AO) molekülünün ön muamelesinin stresin olumsuz etkilerini hafifletici etkilerinin olup olmadığının araştırılmasıdır. Bunun için; 18 saat distile su kontrol (K), 6 saat AO+12 saat distile su (AO), 6 saat distile su+12 saat 100 mM NaCl (TS) ve 6 saat AO+12 saat 100 mM NaCl (AO+TS) deney düzeneği kurulmuştur. Elde edilen bulgulara göre; kontrol uygulaması ile AO uygulaması arasında nispi su içeriği (NSİ) açısından bir fark saptanamazken, TS’de ciddi bir düşüş AO+TS’de ise kontrole göre önemli bir artış olduğu belirlendi. Klorofil içeriği TS uygulamasında AO ve kontrole göre azalırken, AO+TS uygulamasında içerik TS’ye göre önemli bir artış gösterdi. En yüksek karotenoid içeriği TS uygulamasında görülürken, en düşük içerik AO+TS’de belirlendi. MDA ve H2O2 içeriklerinde AO uygulamasında kontrole göre önemli bir azalış gözlenirken, TS’de kontrole göre ciddi bir artış AO+TS’de ise TS ile kıyaslandığında önemli bir azalış belirlendi. Guaiacol peroksidaz, katalaz, askorbat peroksidaz ve süperoksit dismutaz enzimleri AO ön uygulaması ile aktivitelerini düzenleyerek MDA ve H2O2 içeriğini önemli ölçüde azalttığı belirlendi. AO uygulaması ile prolin içeriğinde kontrole göre önemli bir artış gözlenirken, AO+TS’nin TS uygulamasına göre içerikte önemli bir azalışa neden olduğu belirlendi. AO uygulamasının fenolik madde içeriği üzerinde önemli değişikliklere neden olduğu gözlendi. Elde edilen bulgular ışığında, tuz stresi altındaki mısır fidelerine AO ön uygulamasının metabolizmanın genel işleyişini engelleme potansiyeline sahip radikallerin oluşumunu engelleyebileceğini düşündürmektedir.

Investigation of the effects of acetone o-(4 chlorophenylsulfonyl) oxime pre-application on biochemical parameters of maize seedlings under salt stress

The main purpose of the current study is to investigate if the pretreatment of acetone O-(4 chlorophenylsulfonyl) oxime (AO) molecule on maize seedlings under salt stress has mitigating effects on the adverse effects of stress or not. The following experimental setup was established: 18 hours distilled water control (K), 6 hours AO+12 hours distilled water (AO), 6 hours distilled water+then 12 hours 100 mM NaCl (TS) and 6 hours AO+then 12 hours 100 mM NaCl (AO+TS). According to the findings; While there was no difference between the control application and the AO application in terms of relative water content (RSI), it was determined that there was a significant decrease in TS and a significant increase in AO+TS compared to the control. While the chlorophyll content decreased in TS application compared to AO and control, the content increased significantly in AO+TS application compared to TS. While the highest carotenoid content was observed in the TS application, the lowest content was determined in AO+TS. While a significant decrease was observed in MDA and H2O2 contents in AO application compared to the control, a significant increase in TS compared to the control and a significant decrease in AO+TS compared to TS were determined. It was determined that guaiacol peroxidase, catalase, ascorbate peroxidase, and superoxide dismutase enzymes significantly reduced MDA and H2O2 content by regulating their activities with AO pre-application. While a significant increase was observed in proline content with AO application compared to control, it was determined that AO+TS caused a significant decrease in content compared to TS application. It was observed that AO application caused significant changes in the phenolic substance content. In the light of the findings, it is thought that it can be concluded that AO pre-application to maize seedlings under salt stress can prevent the formation of radicals that have the potential to inhibit the general functioning of metabolism.

___

  • Aebi HE. 1983. Catalase. Methods of enzymatic analysis.
  • Ahanger MA, Agarwal RM. 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 115, 449-460.
  • Ampudia-Galvan CS, Testerink C. 2011. Salt stress signals shape the plant root, Current Opinion in Plant Biology, 14, 296–302.
  • Armağan K, Memet İ. 2018. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L.) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri, Tarim ve Doga Dergisi, 21 (4), 559.
  • Arnon DI. 1949. Plant physiology. Plant Physiol 24:1–15.
  • Asada K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Annual review of plant biology, 50 (1), 601-639.
  • Ashraf U, Salim MN, Sher A, Sabir SR, Khan A, Pan S, Tang X. 2016. Maize growth, yield formation and waternitrogen usage in response to varied irrigation and nitrogen supply under semi-arid climate. Turkish Journal of Field Crops, 21(1), 87–95. doi:10.17557/tjfc.93898.
  • Avşar M. 2018. "Kuraklık stresinde fenilalanin uygulamasinin reyhan (Ocimum basilicum l.) bitksinde fenolik bileşikler, antioksidan aktivite ve stres parametrelerine etkisi", Biyoloji Ana Bilim Dalı, Gazi Osmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, 5-70.
  • Barrs H, Weatherley P. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428. doi: 10.1071/bi9620413.
  • Bates L, Waldren R, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:189–198. doi: https://doi.org/10.1007/BF00018060.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287.
  • Belkadhı A, Hediji H, Abbes J, Djebali W, Chaibi W. 2012. Influence od Salicylic Acid Pre-treatment of Cadmium Tolerance and Its Relationship with Non-Protein Thiol production in Flax Root, African Journal of Biotechnology, 11, 9788-9796.
  • Borna F, Nazeri V, Ghaziani F, Shokrpour M. 2021. Morphological and physiological response of some Iranian ecotypes of Leonurus cardiaca L. to drought stress, Journal of Horticulture and Postharvest Research, 37-50.
  • Boyer JS, 1982. Plant productivity and environment. Science, 218: 443-8.
  • Cai Y, Lin L, Cheng W, Zhang G, Wu F.2010. Genotypic Dependent Effect of Exogenous Glutathione on Cd-Induced Changes in Cadmium and Mineral Uptake and Accumulation in Rice Seedlings (Oryza sativa), Plant Soil Environment, 56, 516-525.
  • Çulha Ş, Çakırlar H. 2012. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları, Hacettepe Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, AKÜ FEBİD 11 (2011) 021002 (11-34).
  • Dixit V, Pandey V, Shyam R. 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad), Journal of Experimental Botany, 52 (358), 1101-1109.
  • Doğru A, Torlak E. 2020. Tuz Stresi Altındaki Mısır Bitkilerinde Eksojen Askorbik Asit Uygulamasının Etkileri, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30 (Ek sayı (Additional issue)), 919-927.
  • Ekmekçi E. Apan M, Kara T. 2005. Tuzluluğun bitki gelişimine etkisi, Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi Dergisi, 20, 3, 118-125.
  • Elkelish AA, Alnusaire TS, Soliman MH, Gowayed S, Senousy HH, Fahad S. 2019. Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. J. Appl. Bot. Food Qual, 92, 258-266.
  • Eroğlu İ. 2007. Tuz stresinin Bazı Fasulye (Phaseolus vulgaris L.) Kültür Çeşitlerinde Tohum Çimlenmesi ve Fide Gelişimi Üzerine Etkileri, Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
  • Feierabend J, Schaan C, Hertwig B. 1992. Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem II, Plant Physiology, 100 (3), 1554-1561.
  • Feng XH, Zhang HX, Ali M, Gai WX, Cheng GX, Yu QH, Yang SB, Li XX, Gong ZH. 2019. A small heat shock protein CaHsp25. 9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.), Plant Physiology and Biochemistry, 142, 151-162.
  • Gale F, Jewison M, Hansen J. 2014. Prospects for China’s corn yield growth and imports. Washington DC: United States Department of Agriculture Economic Research Service.
  • Gaspar T. 1991. Penel. C.; hagege, d.; greppin, H. Peroxidases in plant growth, differentiation, and development processes, Lobarzewski, J.; Greppin, H.; Penel, C, 249-280.
  • Guzel S, Terzi R. 2013. Exogenous hydrogen peroxide increases dry matter production, mineral content and level of osmotic solutes in young maize leaves and alleviates deleterious effects of copper stress, Botanical studies, 54 (1), 26.
  • Haarhoff, SJ, Swanepoel PA. 2018. Plant population and maize grain yield: A global systematic review of rainfed trials. Crop Science, 58(5), 1819-1829.
  • Hamdia MA, Shaddad MAK. 2010. Salt tolerance of crop plants. Journal of stress physiology & biochemistry, 6(3), 64-90.
  • He L, Gao Z, Li L. 2009. Pretreatment of Seed with H2O2 Enhances Drought Tolerance of Wheat (Triticum aestivum L.) Seedlings, African Journal of Biotechnology, 8, 6151-6157.
  • Heath R, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: doi: https://doi.org/10.1016/0003-9861(68)90654-1.
  • Hussain HA, Men S, Hussain S, Chen Y, Ali S, Zhang S, Zhang K, Li Y, Xu Q, Liao C, Wang L. 2019. Interactive effects of drought and heat stresses on morphophysiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 3890.
  • Irigoyen J, Emerich D, Sánchez‐Díaz M. 1992. Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution, Physiologia Plantarum, 84 (1), 67-72.
  • Kacar B, Katkat A, Öztürk Ş. 2006. Bitki Fizyolojisi (2. Baskı), Nobel Yayın Dağıtım, Ankara, 563.
  • Kaya B, Artuvan Y. 2016. Alchemilla cimilensis' in farklı polaritedeki ekstraktlarının antioksidan ve antimikrobiyal etkilerinin belirlenmesi, El-Cezeri Fen ve Mühendislik Dergisi, 3 (1), 27-54.
  • Korkmaz A, Duran S. 2021. High yielding electrophilic amination with lower order and higher order organocuprates: Application of acetone O-(4-Chlorophenylsulfonyl)oxime in the construction of the C−N bond at room temperature, Synthetic Communications, DOI: 10.1080/00397911.2021.1924787
  • Korkmaz A. 2021. Room-temperature copper-catalyzed electrophilic amination of arylcadmium iodides with ketoximes. Journal of the Iranian Chemical Society, 1-7.
  • Korkmaz A. (Yayınlanmamış Makale). Copper-Catalyzed Electrophilic Animation of Diarylcadmium Reagents Utilizing Acetone O-(4-chlorophenylsulphonyl)Oxime and Acetone O-(naphthylsulphonyl)oxime as Amination Agent. Iğdır Univ. J. Inst. Sci. & Tech.
  • Lasri J, Soliman SM, Elsilk SE, Haukka M, El-Faham A. 2020. Synthesis, crystal structure, DFT and biological activity of E-pyrene-1-arbaldehyde oxime and E-2-naphthaldehyde oxime, Journal of Molecular Structure, 1207 (2020) 127848.
  • Mahajan S, Pveey GK, Tuteja N. 2008. Calcium- and salt-stress signaling in plants: shedding light on SOS pathway, Archives of Biochemistry and Biophysics, 471, 2, 146–158.
  • Mehlhorn H, Lelandais M, Korth H, Foyer C. 1996. Ascorbate is the natural substrate for plant peroxidases, FEBS letters, 378 (3), 203-206.
  • Mittler R. 2006. Abiotic stress, the field environment and stress combination, Trends in plant science, 11 (1), 15-19.
  • Munns R. 2005. Genes and salt tolerance: bringing them together, New Phytologist, 167, 645–663.
  • Nakano Y, Asada K. 1981. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol 22:867–880. doi: 10.1093/oxfordjournals.pcp.a076232.
  • Parida AK, Das AB. 2005. Salt Tolerance and Salinity Effects on Plants: a Review, Ecotoxicology and Environmental Safety, 60, 324-349.
  • Polash MAS, Sakil MA, Tahjib-Ul-Arif M, Hossain MA. 2018. Effect of salinity on osmolytes and relative water content of selected rice genotypes. Trop Plant Res, 5(2), 227-232.
  • Rosegrant MW, Tokgoz S, Bhandary P. 2012. The new normal? A tighter global agricultural supply and demand relation and its implications for food security Am. J. Agric. Econ., 95, pp. 303-309.
  • Saradhi PP. 1991. Proline accumulation under heavy metal stress, Journal of Plant Physiology, 138 (5), 554-558.
  • Savall ASP, Fidélis EM, Gutierrez MEZ, Martins BB, Gervini VC, Puntel RL, Roos DH, Ávila DS, Pinton S. 2019. Pre-clinical evidence of safety and protective effect of isatin and oxime derivatives against malathion-induced toxicity, Basic Clin Pharmacol Toxicol, 126:399–410.
  • Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2): 123-131.
  • Smirnoff, N. 1998. Plant resistance to environmental stress, Current opinion in Biotechnology, 9 (2), 214-219.
  • Srinieng K, Saisavoey T, Karnchanatat A. 2015. Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pak. J. Bot, 47(1), 1-10.
  • Tapan S. 2016. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus Arvensis and Oenanthe Linearis of north-eastern region in India. J Appl Pharm Sci., 6: 157-166.
  • Thompson JE, Legge RL, Barber R. 1987. The role of free radicals in senescence and wounding, New Phytologist, 105 (3), 317-344.
  • Urbanek H, Kuzniak-Gebarowska E, Herka K. 1991. Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant 13:43–50.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Sci 151:59–66.
  • Yarsi G, Sivaci A, Dasgan HY, Altuntas O, Binzet R, Akhoundnejad Y. 2017. Effects of salinity stress on chlorophyll and carotenoid contents and stomata size of grafted and ungrafted galia C8 melon cultivar. Pak. J. Bot, 49(2), 421-426.
  • Yetişsin F. 2015. "Bakır stresine maruz bırakılan hassas ve dayanıklı mısır çeşitlerinde glutatyon, hidrojen peroksit ve salisilik asit uygulamalarının fotosentetik verim üzerine etkilerinın araştırılması ", Karadeniz teknik üniversitesi Fen bilimleri enstitüsü, Doktora tezi, Trabzon, 142 s.
  • Yetişsin F, Kurt F. 2020. Gallic acid (GA) alleviating copper (Cu) toxicity in maize (Zea mays L.) seedlings, International Journal of Phytoremediation, 22 (4), 420-426.
  • Zeng F, Qiu B, Wu X, Niu S, Wu F, Zhang G. 2012. Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants, Biol. Trace Elem. Res., 148, 255–263.
  • Zhmurenko LA, Litvinova SA, Kutepova IS, Nerobkova LN, Mokrov GV, Rebeko AG, Voronina TA, Gudasheva TA. 2020. Synthesıs of Dıbenzofuranone-Oxıme Derıvatıves wıth Antıconvulsant, Antıhypoxıc, and Antı-Ischemıc Actıvıty, Pharmaceu- tical Chemistry Journal, 53:997-1004.
  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H. 2010. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt ve osmotic stress responses, Gene, 457, 1–12.
  • Zu C, Jliang C, Lu D. 2017. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress, Scientific Reports | 7:42039 | DOI: 10.1038/srep42039.