Çinko ve bakır gideriminde bir biyokütle kaynağı olarak defne yapraklarının kullanılması ve modellenmesi

Türkiye’de kereste dışı orman ürünlerinden olan tıbbi ve aromatik bitkiler sosyo-ekonomik açıdan bu yüzyılda önem kazanmaya başlamıştır. Bu çalışmada aromatic bir bitki olan defne yaprakları arıtma prosesesinde biyosorban olarak kullanılmıştır. Biyosorban dozajı, çözelti pH'sı, temas süresi, başlangıçtaki ağır metal iyonları konsantrasyonu, iyonik kuvvet, hümik asit etkisi ve LNL ile Bakır (II) ve çinko (II) 'nun biyosorpsiyonu üzerindeki rekabetçi etkiler incelenmiştir. Biyosorban, FT-IR ve SEM görüntüleri kullanılarak karakterize edilmiştir. Doğrusallaştırılmış ve doğrusallaştırılmamış izoterm modelleri karşılaştırılmış ve tartışılmıştır. Zn (II) ve Cu (II) biyosorpsiyonu, Temkin denklemiyle daha iyi uyum sağlamış ve sahte ikinci derece reaksiyon kinetiği, her iki ağır metalin biyosorpsiyon davranışlarıyla da uyum göstermistir. Ayrıca, ağır metal biyosorpsiyonu için doğrusal olmayan en uygun izoterm denklemine dayanan tek kademeli bir biyoreaktör sistemi de sunulmuştur. Ağır metal giderimini ortamdaki diğer iyonların varlığı bir miktar etkilemiştir. Bu çalışmalar LNL'nin çinko ve bakır iyonlarını kirli sulardan uzaklaştırmak için, çevre dostu ve bol bulunan bir biyosorban olarak, değerlendirilebileceğini göstermiştir.

Modeling and utilization of laurel leaves as a biomass source for the removal of zinc and copper

Medicinal and aromatic plants which is one of the considerable non-timber forest products in Turkey,especially in the last century have become an important socio-economic values. In this study, Laurusnobilis L. leaves (LNL), an aromatic plant, were used as biosorbent in the treatment process. Theeffects of biosorbent dosage, biosorption time, solution pH, initial zinc and copper ions concentration,humic acid or ionic strength or competitive effects on the biosorption of Zn(II) and Cu(II) by LNL wereinvestigated. The LNL biomass was characterized using SEM and FT-IR spectrum. The non-linearizedand linearized isotherm equations were compared and discussed. Zn(II) and Cu(II) biosorption bettermatched with the Temkin equation and Pseudo second-order kinetic equation successfully definedthe biomass behaviors of both heavy metal ions. Additionally, a single-stage batch bioreactor systemfor heavy metal biosorption based on the best fit non-linear isotherm equation also has beenpresented. It was found that heavy metal uptake was affected by competitive biosorption studies.Finally, these studies showed that the LNL can be used as an environmentally friendly and abundantbiosorbent for removing zinc and copper ions from contaminated waters.

___

  • Araújo CS, Almeida IL, Rezende HC, Marcionilio SM, Léon JJ, & de Matos TN (2018) Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354
  • Bayo J, Esteban G & Castillo J (2012) The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium (II) biosorption: equilibrium and kinetic modelling, Environmental technology, 33(7), 761-772
  • Bayram E, Kırıcı S, Tansı S, Yılmaz G, Arabacı O, Kızıl S, & Telci İ (2010). Tıbbi Bitkilerin Üretiminin Arttırılması Olanakları. VII. Türkiye Ziraat Mühendisliği Teknik Kongresi Bildiriler Kitabı-1, 453-484
  • Choi JW, Chung SG, Hong SW, Kim DJ, Lee SH (2012) Development of an environmentally friendly adsorbent for the removal of toxic heavy metals from aqueous solution, Water Air Soil Pollut. 223: 1837–1846
  • Choudhary B. & Paul D (2018) Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar, Journal of Environmental Chemical Engineering, 6(2), 2335-2343
  • Dawood S. & Sen TK (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water research, 46(6), 1933-1946
  • Freundlich HMF (1906) Over the adsorption in solution, The Journal of Physical Chemistry, 57–385. 470. 16
  • Gümüş D & Akbal F (2017) A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid. Chemosphere, 174, 218-231
  • Gümüş D (2019) Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal. International journal of phytoremediation, 21(6), 556-563
  • Hafshejani LD, Nasab SB, Gholami RM, Moradzadeh M, Izadpanah Z, Hafshejani SB & Bhatnagar A (2015). Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of molecular liquids, 211, 448-456
  • Ho YS (2006) Review of second-order models for adsorption systems. Jornal of Hazardous Materials, 136, 681–689
  • Hussin Talib ZM, Hussin Hanafiah NM, MA. & Khalir WK (2015) Methylene blue adsorption onto NaOH modified durian leaf powder: isotherm and kinetic studies. American Journal of Environmental Enginnering, 5(3A), 38-43
  • Jaman H, Chakraborty D & Saha P (2009) A study of the thermodynamics and kinetics of copper adsorption using chemically modified rice husk. CLEAN–Soil, Air, Water. 37(9): 704- 711
  • Kamari A, Yusof SN, Abdullah F & Putra WP (2014) Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. J.Environ. Chemical Eng. 2(4): 1912-1919
  • Kumar S, Singh J & Sharma A (2004) Bay leaves. In: Handbook of herbs and spices, (Ed.): K.V. Peter. Woodhead Publishing Limited, Cambridge, England.
  • Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven, Vetenskapsakad. Handl. 24. 1–39
  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 40, 1361–1403
  • Laskar MA, Ali SK & Siddiqui S (2016) A potential bio-sorbent for heavy metals in the remediation of waste water. Journal of Sustainable Development of Energy, Water and Environment Systems, 4(4), 320-332
  • Liu C, Bai R & San LyQ (2008) Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms, Water Research, 42(6-7), 1511-1522
  • Matouq M, Jildeh N, Qtaishat M, Hindiyeh, M & Al Syouf MQ (2015) The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chemical Eng. 3(2): 775-784
  • Mishra PC & Patel RK (2009) Removal of lead and zinc ions from water by low cost adsorbents, Journal of Hazardous Materials, 168(1), 319-325
  • Morosanu I, Teodosiu C, Paduraru C, Ibanescu D & Tofan L (2017) Biosorption of lead ions from aqueous effluents by rapeseed biomass, New biotechnology, 3: 110-124
  • Ngah WW & Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresource technology, 99(10), 3935-3948
  • Obike AI, Igwe JC, Emeruwa CN & Uwakwe KJ (2018) Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk, Journal of Applied Science and Environmental Management, 22(2): 182-190
  • Peixoto LR, Rosalen PL, Ferreira GLS, Freires IA, de Carvalho FG, Castellano LR & de Castro RD (2017) Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology. 73: 179-185
  • Rao KS, Mohapatra M, Anand S & Venkateswarlu P (2010) Review on cadmium removal from aqueous solutions. International Journal of Engineering Science and Technology 2(7)
  • Reddy DD, Ghosh RK, Bindu JP, Mahadevaswamy M & Murthy TGK (2017) Removal of methylene blue from aqueous system using tobacco stems biomass: Kinetics, mechanism and single stage adsorber design. Environmental Progress & Sustainable Energy, 36(4), 1005-1012
  • Sahmoune MN (2018) Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchemical Journal.
  • Saraeian A, Hadio A, Raji F, Ghassemi A & Johnson M (2018) Cadmium removal from aqueous solution by low-cost native and surface modified Sorghum x drummondii (Sudangrass), Journal of Environmental Chemical Engineering, 6(2), 3322-3331
  • Semerci A & Çelik AD (2017) Defne Bitkisinin Hatay İli Ekonomisindeki Yeri ve Önemi. SDÜ Ziraat Fakültesi Dergisi, 12(2), 125-134
  • Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on dye loadedgroundnut shells and sawdust, Sep. Purif. Technol. 43: 1–8
  • Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review, Science of Total Environment, 468–469, 1014–1027
  • Temkin MJ & Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochimica URSS, 12: 217–222
  • Tsai SC & Juang KW (2000) Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. Journal of Radioanalytical and Nuclear Chemistry, 243(3), 741-746
  • Xiong C & Yao C (2009) Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chemical Engineering Journal, 155(3), 844-850
  • Yan C, Li G, Xue P, Wei Q & Li Q (2010) Competitive effect of Cu (II) and Zn (II) on the biosorption of lead (II) by Myriophyllum spicatum, Journal of Hazardous Materials 179(1-3), 721-728
  • Yasin SA & Qasim, AK (2018) Kinetic Study of Adsorption of Hexavalent Chromium in Aqueous Solution using Bay Leaf (Laurus Nobilis) as New Bio-Adsorbent. Science Journal of University of Zakho, 6(3), 104-107
Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi-Cover
  • ISSN: 2146-1880
  • Yayın Aralığı: 2
  • Başlangıç: 2000
  • Yayıncı: Artvin Çoruh Üniversitesi Orman Fakültesi