Yüksek dayanımlı betonarme kolonların analizi için beton gerilme-birim deformasyon modeli

Sunulan çalışmada, eksantrik yüklemeye maruz yüksek dayanımlı kısa ve narin betonarme kolonların analizi için beton gerilme-birim deformasyon modeli önerilmektedir. Beton dayanımı 40 ile 90 MPa arasında değişen ve doğrusal olmayan beton gerilme-birim deformasyon modelini temsil eden matematiksel model deneysel verilere dayandırılarak geliştirilmiştir. Beton modelinin güvenilirliğini ve geçerliliğini doğrulamak için literatürde bulunan birçok deneysel kolon önerilen beton modeli ve dikdörtgen gerilme dağılım modeli kullanılarak analiz edilmiştir. Hesaplanan teorik yüksek dayanımlı kolon taşıma gücü değerlerinin test değerleri ile uyumlu olduğu elde edilmiştir.

A concrete stress-strain model for analysis of high strength reinforced concrete columns

A concrete stress-strain model for analysis of eccentrically loaded both short and slender high strength reinforced concrete columns is proposed in this paper. The mathematical model has been developed based on the test data to represent the complete nonlinear stress-strain relationship of high strength concrete ranging from 40 to 90 MPa. Several slender high strength concrete columns available in the literature have been analysed using both proposed nonlinear stress-strain model and the equivalent rectangular stress block model to confirm the reliability and validity of the proposed model. Good agreement has been achieved between the computed theoretical ultimate strength capacities and the test results of high strength concrete columns.

___

  • [1] Hognestad, E., Hanson, N.W., McHenry, D. (1955). Concrete stress distribution in ultimate stress design. ACI Journal, 27(4), 455-479.
  • [2] Kent, D.C., Park, R. (1971). Flexural members with confined concrete. Journal of Structural Division., ASCE, 97(7), 1969-1990.
  • [3] Popovics, S. (1973). Analytical approach the complete stress-strain curves. Cement and Concrete Research, 3(5), 583-599.
  • [4] Sheikh, S.A., Uzumeri, S.M. (1982). Analytical model for concrete confinement in tied columns. Journal of Structural Division, ASCE, 108(12), 2703-2722.
  • [5] Ahmad, S.H., Shah, S.P. (1982). Stress-strain curves of concrete confined by spiral reinforcement. ACI Journal, 79(6), 484-490.
  • [6] Fafitis, A., Shah, S.P. (1985). Prediction of ultimate behavior of confined columns subjected to large deformations. ACI Structural Journal, 82(4), 423-433.
  • [7] Sheikh, S.A., Yeh, C.C. (1986). Flexural behavior of confined concrete columns. ACI Structural Journal, 389-404.
  • [8] Hsu, L.S.M., Hsu, C.T.T. (1992). Stress-strain behavior of plain and fibrous high strength concrete under compression. Technical report 92-1, Structural Concrete Series, Department of Civil and Environmental Engineering, NJIT, Newark.
  • [9] Saatcioglu, M., Razvi, S.R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering, 18(6), 1590-1607.
  • [10] Nagashima, T., Sugano, S,, Kimura, H., Ichikawa, A. Monotonic axial compression test on ultra-high-strength concrete tied columns. Proc. 10th World Conference on Earthquake Engineering, Balkema, Rotterdam, The Netherlands, pp. 2983-2988.
  • [11] Muguruma, H., Nishiyama, M., Watanabe, F. (1993). Stress-strain curve for concrete with a wide range of compressive strength. Proc. Symp. On High-Strength Concrete, 314-321.
  • [12] Cusson, D., Paultre, P. (1995). Stress-strain model for confined high-strength concrete. Journal of Structural Engineering,121(3), 468-477.
  • [13] Razvi, S., Saatcioglu, M. (1999). Confinement model for high-strength concrete. Journal of Structural Engineering, 125(3), 281-289.
  • [14] Binici, B. (2005). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 25, 1040-1051.
  • [15] Yong, Y.K., Nour, M.G., Nawy, E.G. (1988). Behavior of laterally confined high-strength concrete under axial loads. Journal of Structural Engineering, 114(2), 332-351.
  • [16] Mander, J.B., Priestley, J.N., Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
  • [17] Cusson, D., Paultre, P. (1992). High-strength concrete columns confined by rectangular ties. ASCE, Journal of Structural Engineering, 120(3), 783804.
  • [18] Polat, M.B. (1992) Behavior of normal and high strength concrete under axial compression. MASc thesis, Dept. Civ. Engrg. University of Toronto, Toronto, On, Canada, pp. 175.
  • [19] Razvi, S.R., Saatcioglu, M. (1994). Strength and deformability of confined high-strength concrete columns. ACI Structural Journal, 91(6), 678-687.
  • [20] Hsu, C.T.T., Hsu, L.S.M., Tsao, W.H. (1995). Biaxially loaded slender high-strength reinforced concrete columns with and without steel fibres. Magazine of Concrete Research, 47(173), 299310.
  • [21] Lloyd, N.A., Rangan, B.V.(1995). Behavior high-strength concrete columns under eccentric compression. Res.Rep. No.1/95, School of Civil Engineering, Curtin University of Technology, Perth, Australia.
  • [22] Lloyd, N.A., Rangan, B.V. (1996). Studies on high-strength concrete columns under eccentric compression. ACI Structural Journal, 93(6), 63138.
  • [23] Ibrahim, H.H.H., MacGregor, J.G. (1996). Tests of eccentrically loaded high-strength concrete columns. ACI Structural Journal, 93(5), 585-594.
  • [24] Saatcioglu, M., Razvi, S.R. (1998). High-strength concrete columns with square sections under concentric compression. Journal of Structural Engineering, 124(12), 1438-1447.
  • [25] Chuang, P.H., Kong, S.K. (1998). Strength of slender reinforced concrete columns. Journal of Structural Engineering, 124(9), 992-998.
  • [26] Rangan, B.V. (1999). Studies on high-performance high-strength concrete columns. In:Proceedings of the second CANMET/ACI International Conference, Gramado, RS: Brazil, 745-764.
  • [27] Stewart, M.G., Attard, M.M. (1999). Reliability and model accuracy for high-strength concrete column design. Journal of Structural Engineering, 125(3), 290-300.
  • [28] Lee, J.H., Son, H.S. (2000). Failure and strength of high-strength concrete columns subjected to eccentric loads. ACI Structural Journal, 97(1), 75-85.
  • [29] Sarker, P.K., Rangan, B.V. (2003). Reinforced concrete columns under unequal load eccentricities. ACI Structural Journal, 100(4), 519-528.
  • [30] Diniz, S.M.C., Frangopol, D.M. (2003). Safety evaluation of slender high-strength concrete columns under sustained loads. Computers &Structures, 81, 147586.
  • [31] Canbay, E., Ozcebe, G., Ersoy, U. (2006). High-strength concrete columns under eccentric load. ASCE, Journal of Structural Engineering, 132(7), 1052-1060.
  • [32] Tokgoz, S. (2009). Effects of steel fiber addition on the behaviour of biaxially loaded high strength concrete columns, Materials and Structures, 42(8), 1125-1138.
  • [33] Dundar, C., Tokgoz, S. (2012). Strength of biaxially loaded high strength reinforced concrete columns, Structural Engineering and Mechanics, 44(5), 649-661.
  • [34] Xu, C., Jin, L., Ding, Z., Li, D., Du, X. (2016). Size effect tests of high-strength RC columns under eccentric loading. Engineering Structures, 126, 78-91.
  • [35] Ozbakkaloglu, T., Saatcioglu, M. (2004). Rectangular stress block for high strength concrete. ACI Structural Journal, 101(4), 47583.
  • [36] ACI-ASCE Committee 441. (1997). High-strength concrete columns: State of the art. ACI Structural Journal, 94(3), 32335.
  • [37] Dundar, C., Tokgoz, S., Tanrikulu, A.K., Baran, T. (2008). Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load. Building and Environment, 43(6), 11091120.
  • [38] ACI 318-08: Building code requirements for structural concrete (2002). American Concrete Institute, Farmington Hills, Mich.