NLRP3 İnflamazom Aktivasyon ve Düzenleme Mekanizmalarına Genel Bir Bakış

Doğal bağışıklık sistemi, vücuda giren patojenlere karşı konakçı savunmasında hayati önem taşır. Doğal bağışıklık sisteminin bir bileşeni olan NLRP3 (NACHT-, LRR- ve pirin alanı içeren 3) inflamazom, multimerik bir protein kompleksidir. İnflamazom aktivasyonu klasik enflamatuvar cevaplardan farklı olarak başlayan ve gelişen bir süreçtir. NLRP3 inflamazom aktivasyonunun oluşması için DAMP'ler (Hasarlanma ile ilişkili moleküler modeller) ve PAMP'ler (Patojenle ilişkili moleküler modeller) gibi çeşitli tehlike sinyallerinin olması gerekir. Bu uyaranlara yanıt olarak, kaspaz-1 aktive olur. Aktif kaspaz-1 de, IL-1β (interlökin-1β) ve IL-18 (interlökin-18) sitokinlerinin öncül halde bulunan formlarını proteolitik olarak böler ve aktif hale getirir. Böylece IL-1β ve IL-18 aracılı enflamatuvar yanıtlar aktive olur. NLPR3 aktivasyonu önemli bir bağışıklık cevabı olmasına rağmen aşırı aktivasyonu enflamatuvar hastalıklara ve hücre ölümüne neden olabilmektedir. Bu nedenden dolayı, NLRP3 inflamazomunun regülasyonu ve inhibisyonu otoenflamatuvar hastalıklar için umut verici bir tedavi yaklaşımı olabilir. Bu derlemede, NLRP3 inflamazom aktivasyon mekanizmaları hakkındaki mevcut anlayışın yanı sıra standart olmayan ve alternatif inflamazom yolaklarındaki son gelişmeler sunulmuştur.

An Overview of NLRP3 Inflammasome Activation and Regulation Mechanisms

The innate immune system is vital in host defense against pathogens entering the body. The NLRP3 (NACHT-, LRR- and Pyrin Domain Containing 3) inflammasome, a component of the innate immune system, is a multimeric protein complex. Inflammasome activation is a process that starts and improves differently from classical inflammatory responses. In order to induce inflammasome activation, there must be a danger signal such as DAMP (Damage-Associated Molecular Pattern) or PAMP (Pathogen-Associated Molecular Pattern) detected. In response to these stimuli, caspase-1 is activated. This in turn leads to cleavage and maturation of potent pro-inflammatory cytokines, IL-1β (interleukin-1β) and IL-18 (interleukin-18) by mature caspase-1. Thus, inflammatory responses mediated by IL-1β and IL-18 are activated. Although NLPR3 activation is an important immune response, its overactivation can cause inflammatory disorders and cell death. For this reason, regulation and inhibition of the NLRP3 inflammasome may be a promising treatment approach for these autoinflammatory diseases. In this review presents the current understanding of the mechanisms of NLRP3 inflammasome activation, as well as recent advances in the non-canonical and alternative inflammasome pathways.

___

  • 1. Kesikli SA, Güç D. Steril İnflamasyon ve İnflamazom. ANKEM Derg. 2011;25:102-9.
  • 2. Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol. 2016;213:617–29.
  • 3. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019;20:3328.
  • 4. Schroder K, Tschopp J. The Inflammasomes. Cell. 2010;140:821–32.
  • 5. Shao B, Xu Z, Han B, Su D, Liu C. NLRP3 inflammasome and its inhibitors: a review. Frontiers in Pharmacolog. 2015;6:262.
  • 6. Trdizin. Available from: https://app.trdizin.gov.tr/dokumangoruntule?ext=pdf&path=CrnWZGRsXTjRjLjWxD978OSUAL2jXitizhVYmCxNvH4Z8Ahs_kDHkpOxOpWgszYwDyLz tUwSuCHva_2PxJac6LjQwtnm8RiZLCI2oA_RET6abSR9cp62ynnLp3sfPyY70W8607s7mQZM810EOcuowow_Bq5symY zpbJlJABjs7JZpI13HG1vGn4Li84WOfSzdJrsxZxRjlCPJ9sZtOkSBOw_3uNLnlGCpPJDhfrBbIk=&contentType=applicati on/pdf. Accessed: 12 October 2021.
  • 7. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012– 21.
  • 8. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews. 2018;17:588-606.
  • 9. Şahin C, Arıcıoğlu F. Depresyon ve Sitokin Hipotezinde Yeni Bir Boyut: ‘NLRP3 İnflamazomu’. MÜSBED. 2013;3:65-8.
  • 10. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES. The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590–604.
  • 11. Arıöz Bİ. Melatonin´in Mikroglial Hücrelerde İnflamazom Aktivasyonuna Etkisi (Yüksek Lisans Tezi). İzmir. Dokuz Eylül Üniversitesi. 2017.
  • 12. Kim N, Kim H, Lee J, Jo S, Won H, Lee G et al. Juglone Suppresses LPS-induced Inflammatory Responses and NLRP3 Activation in Macrophages. Molecules. 2020;25;3104.
  • 13. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D et al. Cutting Edge: NF-kB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. J. Immunol. 2009;183:787-91.
  • 14. Gurung P, Anand PK, Malireddi RKS, Walle LV, Opdenbosch NV, Dillon CP et al. FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3 Inflammasomes. J. Immunol. 2014;192:1835–46.
  • 15. Allam R, Lawlor KE, Yu ECW, Mildenhall AL, Moujalled DM, Lewis RS et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 2014;15:982–90.
  • 16. Lemmers B, Salmena L, Bidere N, Su H, Matysiak-Zablocki E, Murakami K et al. Essential Role for Caspase-8 in Toll-like Receptors and NF-kB Signaling. J. Biol. Chem. 2007;282:7416–23.
  • 17. Kim SJ, Cha JY, Kang HS, Lee JH, Lee JY, Park JH et al. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep. 2016;49:276–81.
  • 18. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation. 2007;14:1583–9.
  • 19. Franchi L, Kanneganti T, Dubyak GR, Nunez G. Differential requirement of P2X7 receptor and intracellular K+ for caspase1 activation induced by intracellular and extracellular bacteria. Journal of Biological Chemistry. 2007;282:18810–8.
  • 20. Munoz-Planillo R, Kuffa P, Martínez-Colon G, Smith BL, Rajendiran TM, Nunez G et al. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53.
  • 21. Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A. 2012;109:11282–7.
  • 22. Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 2012;492:123–7.
  • 23. Schorn C, Frey B, Lauber K, Janko C, Strysio M, Keppeler H et al. Sodium overload and water influx activate the NALP3 inflammasome. J. Biol. Chem. 2011;286:35–41.
  • 24. Verhoef PA, Kertesy SB, Lundberg K, Kahlenberg JM, Dubyak GR. Inhibitory e ects of chloride on the activation of caspase1, IL-1beta secretion, and cytolysis by the P2X7 receptor. J. Immunol. Baltim. Md 1950. 2005;175:7623–34.
  • 25. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221– 5.
  • 26. Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011;12:222–30.
  • 27. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity .2012;36:401–14.
  • 28. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin X et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560:198–203.
  • 29. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008;9:847–56.
  • 30. Weber K, Schilling JD. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J. Biol. Chem. 2014;289:9158–71.
  • 31. Kayagaki N, Warming S, Lamkanfi M, Walle LV, Louie S, Dong J et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117–21.
  • 32. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–92.
  • 33. Evavold CL. Ruan J, Tan T, Xia S, Wu H, Kagan JC. The pore-forming protein gasdermin D regulates interleukin‑1 secretion from living macrophages. Immunity. 2018;48:35–44.
  • 34. Zanoni I, Tan Y, Di Gioia M, Springstead JR. Kagan JC. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity. 2017;47:697–709.
  • 35. He Y, Franchi, Gabriel Nunez. TLR agonists stimulate Nlrp3-dependent IL-1beta production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol. 2013;190:334–9.
  • 36. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.
  • 37. Chow MT, Sceneay J, Paget C, Wong CSF, Duret H, Tschopp J et al. NLRP3 suppresses NK cell mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72:5721–32.
  • 38. van Deventer HW, Burgents JE, Wu QP, Woodford RT, Brickey WJ, Allen IC et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 2010;70:10161-9.
  • 39. Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu. Rev. Pathol. 2015;10:395–424.