Myastenia Gravis ve Gebelik

Myastenia gravis, dünyada yaklaşık bir milyon kişiyi etkileyen otoimmun bir hastalıktır. Nikotinik asetilkolin reseptörüne veya diğer postsinaptik antijenlere (kas spesifik kinaz gibi) karşı gelişen antikorlar sonucunda myastenia gravis gelişir. Timusun hiperplazisi ve tümörü bu anormal antikorlaın yapımına neden olur. Myastenia gravis tanısı yorgunluk, ağrısız kas güçsüzlüğü gibi kardinal belirtilere eşlik eden serum otoantikor pozitifliği, elektromyografi de nöromüsküler iletim kusurunun gözlenmesi ile konulur. Semptomatik tedavi antikolinesterazlarla, hastalığın kontrolü ise immun aracılı tedavilerle yöntemleriyle yapılır. Myastenia gravisin kadınlarda fertilite üzerine etkisi yoktur, olgular çocuk sahibi olabilirler. Bu yazıda gebelerde myastenia gravise yaklaşım detaylı olarak ele alınacaktır

Archives Medical Review Journal

Myasthenia gravis is an autoimmune disease affecting nearly one million individuals worldwide. Myasthenia gravis develops due to antibodies against the nicotinic acetylcholine receptoror othe r postsynaptic antigens. Hyperplasia and tumours of the thymus can cause the abnormal production of these autoantibodies. Diagnosis of myasthenia gravis could be made through recognition of the cardinal clinical features of fatigable, painless muscle weakness with confirmatory serum autoantibody analysis and electromyographic evidence of disordered neuromuscular transmission, thereby excluding other differential diagnoses. Symptomatic improvement may be achieved through the use of anticholinesterase drugs, although usually immune-directed treatments are required to control the disease. The disease does not affect fertility in women and patients can have children. In this paper management to pregnant myasthenia gravis patients will be discussed in detail

___

  • 1. Makowska K, Estañ MC, Gañán-Gómez I, Boyano-Adánez MC, García-Pérez AI, Sancho P. Changes in mitochondrial function induced by dequalinium precede oxidative stress and apoptosis in the human prostate cancer cell line PC-3. Mol Biol (Mosk). 2014;48:416-28.
  • 2. He B, Tao H, Liu S. Effect of carboxymethylated chitosan on apoptosis and expression of brain derived neurotrophic factor and glial cell line derived neurotrophic factor in oxidative stress induced Schwann cells in vitro. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28:1530-5.
  • 3. He Q, Bao L, Zimering J, Zan K, Zhang Z, Shi H et al. The protective role of (-)-epigallocatechin-3- gallate in thrombin-induced neuronal cell apoptosis and JNK-MAPK activation. Neuroreport. 2015;26:416-23.
  • 4. Pompei LM, Cunha EP, Steiner ML, Theodoro TR, Mader AM, Petri G et al. Effects of estradiol, progestogens, and of tibolone on breast proliferation and apoptosis. Climacteric. 2015;1-5.
  • 5. Antognelli C, Gambelunghe A, Muzi G, Talesa VN. Peroxynitrite-mediated glyoxalase I epigenetic inhibition drives apoptosis in airway epithelial cells exposed to crystalline silica via a novel mechanism involving Argpyrimidine-modified Hsp70, JNK and NF-kB. Free Radic Biol Med. 2015;30:513-23.
  • 6. Pythoud C, Rothenberger S, Martinez-Sobrido L, de la Torre JC, Kunz S. Lymphocytic choriomeningitis virus differentially affects virus-induced type I IFN response and mitochondrial apoptosis mediated by RIG-I/MAVS. J Virol. 2015;89:6240-50.
  • 7. Annamalai P, Thayman M, Rajan S, Raman L S, Ramasubbu S, Perumal P. Ethyl acetate extract from marine sponge Hyattella cribriformis exhibit potent anticancer activity by promoting tubulin polymerization as evidenced mitotic arrest and induction of apoptosis. Pharmacogn Mag. 2015;11:345-55.
  • 8. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16:2129-44.
  • 9. Wang JH, Zhou WW, Cheng ST, Liu BX, Liu FR,Song JQ. Downregulation of Sprouty homolog 2 by microRNA-21 inhibits proliferation, metastasis and invasion, however promotes the apoptosis of multiple myeloma cells. Mol Med Rep. 2015;12:1810-6.
  • 10. Dittz D, Figueiredo C, Lemos FO, Viana CT, Andrade SP, Souza-Fagundes EM et al. Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of proteases from V. cundinamarcensis (C. candamarcensis) in Murine Melanoma B16F1. Int J Mol Sci. 2015;16:7027-44.
  • 11. Buzin A, Pinto FE, Nieschke K, Mittag A, de Andrade TU, Endringer DC et al. Replacement of specific markers for apoptosis and necrosis by nuclear morphology for affordable cytometry. J Immunol Methods. 2015;420:24-30.
  • 12. Papadopoulos EI, Yousef GM, Scorilas A. Gemcitabine impacts differentially on bladder and kidney cancer cells: distinct modulations in the expression patterns of apoptosis-related microRNAs and BCL2 family genes. Tumour Biol. 2015;36:3197-207.
  • 13. Li JP, Yang YX, Liu QL, Pan ST, He ZX, Zhang X et al. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. Drug Des Devel Ther. 2015;9:1627- 52.
  • 14. Yun M, Lee D, Park MN, Kim EO, Sohn EJ, Kwon BM et al. Cinnamaldehyde derivative (CB-PIC) sensitizes chemo-resistant cancer cells to drug-induced apoptosis via suppression of MDR1 and its upstream STAT3 and AKT signalling. Cell Physiol Biochem. 2015;35:1821-30.
  • 15. Ding X, Chen Y, Han L, Qiu W, Gu X,Zhang H. Apoptosis related protein 3 is a lysosomal membrane protein. Biochem Biophys Res Commun. 2015;460:915-22.
  • 16. Zeng W, Wang X, Xu P, Liu G, Eden H S,Chen X. Molecular Imaging of apoptosis: from micro to macro.Theranostics. 2015;5:559-82.
  • 17. Zhang X, Ruan Y, Li Y, Lin D, Quan C. Tight junction protein claudin-6 inhibits growth and induces the apoptosis of cervical carcinoma cells in vitro and in vivo. Med Oncol. 2015;32:600-4.
  • 18. Barlaka E, Gorbe A, Gaspar R, Paloczi J, Ferdinandy P,Lazou A. Activation of PPARbeta/delta protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases. Pharmacol Res. 2015;28:102-10.
  • 19. Shoja MH, Reddy ND, Nayak PG, Srinivasan KK,Mallikarjuna Rao C. Glycosmis pentaphylla (Retz.) DC arrests cell cycle and induces apoptosis via caspase 3/7 activation in breast cancer cells. J Ethnopharmacol. 2015;168:50-60.
  • 20. Chiu YS, Cheng YH, Lin SW, Chang TS, Liou CJ,Lai YS. Bupivacaine induces apoptosis through caspase-dependent and -independent pathways in canine mammary tumor cells. Res Vet Sci. 2015;65:447-55.
  • 21. Jeon SR, LeeJW, Jang PS, Chung NG, Cho B,Jeong DC. Anti-leukemic properties of deferasirox via apoptosis in murine leukemia cell lines. Blood Res. 2015;50:33-9.
  • 22. Zhang XJ, Mei WL, Tan GH, Wang CC, Zhou SL, Huang FR et al. strophalloside induces apoptosis of sgc-7901 cells through the mitochondrion-dependent caspase-3 pathway. Molecules. 2015;20:5714-28.
  • 23. Wang B, Zhao MZ, Cui NP, Lin DD, Zhang AY, Qin Y et al. Kruppel-like factor 4 induces apoptosis and inhibits tumorigenic progression in SK-BR-3 breast cancer cells. FEBS Open Bio. 2015;5:147- 54.
  • 24. Schmich K, Schlatter R, Corazza N, Sa Ferreira K, Ederer M, Brunner T et al. Tumor necrosis factor alpha sensitizes primary murine hepatocytes to Fas/CD95-induced apoptosis in a Bim- and Biddependent manner. Hepatology. 2011;53:282-92.
  • 25. Zeng G, Shen H, Tang G, Cai X, Bi L, Sun B et al. A polysaccharide from the alkaline extract of Glycyrrhiza inflata induces apoptosis of human oral cancer SCC-25 cells via mitochondrial pathway. Tumour Biol. 2015;37:215-8.
  • 26. Boeddeker SJ, Baston-Buest DM, Fehm T, Kruessel J, Hess A. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli. PLoS One. 2015;10:103-7.
  • 27. Cao J, Miao Q, Miao S, Bi L, Zhang S, Yang Q et al. Tetramethylpyrazine (TMP) exerts antitumor effects by inducing apoptosis and autophagy in hepatocellular carcinoma. Int Immunopharmacol. 2015;26:212-20.
  • 28. Jullien N, Roche C, Brue T, Figarella-Branger D, Graillon T, Barlier A et al. Dose-Dependent Dual Role of PIT-1 (POU1F1) in Somatolactotroph Cell Proliferation and Apoptosis. PLoS One. 2015;10:198-203.
  • 29. Pan ST, Qin Y, Zhou ZW, He ZX, Zhang X, Yang T et al. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des Devel Ther. 2015;9:1601-26.
  • 30. Fritsche MK, Metzler V, Becker K, Plettenberg C, Heiser C, Hofauer B et al. Cisplatin fails to induce puma mediated apoptosis in mucosal melanomas. Oncotarget. 2015;30:9887-96.
  • 31. Heo S H, Kwak J, Jang K L. All-trans retinoic acid induces p53-depenent apoptosis in human hepatocytes by activating p14 expression via promoter hypomethylation. Cancer Lett. 2015;362:39-48.
  • 32. Alayev A, Salamon RS, Sun Y, Schwartz NS, Li C, Yu JJ et al. the combination of rapamycin and resveratrol causes apoptosis and reduces growth of TSC2-deficient xenograft tumors. Am J Respir Cell Mol Biol. 2015;6:36-42.
  • 33. Kumazoe M, Fujimura Y, Hidaka S, Kim Y, Murayama K, Takai M et al. Metabolic Profiling-based Data-mining for an Effective Chemical Combination to Induce Apoptosis of Cancer Cells. Sci Rep. 2015;5:9474-9.