Glokom İle İlişkili Genler

ÖZET Glokom, optik sinirin dejenerasyonu ile karakterize karmaşık bir hastalıktır ve dünya çapında geri döndürülemez körlüğün en yaygın nedenidir. Epidemiyolojik çalışmalar, glokomdan etkilenen ailelerin raporları, genom çapında ilişkilendirme çalışmaları ve glokomun hayvan modelleri kullanılarak glokom için genetik bir temel oluşturulmuştur. Glokom, nadir görülen erken başlangıçlı hastalık (40 yaşından önce) için tipik olan Mendel kalıtımı ve yaygın erişkin başlangıçlı hastalık formlarında belirgin olan karmaşık kalıtım ile her yaşta ortaya çıkabilmektedir. Son çalışmalar, miyosilin, optineurin ve TANK bağlayıcı kinaz 1 mutasyonlarının neden olduğu erken başlangıçlı glokomu olan bazı hastalar için olası terapötik hedefler önermektedir. Erken başlangıçlı glokom hastalığının tanısında kullanılan genetik testler de semptomatik hastalıkların tespiti için yararlı olduğunu kanıtlamaktadır. Primer Açık Açılı Glokom, Primer Açı Kapanması Glokomu ve Eksfoliyasyon Sendromu olmak üzere üç yaygın yetişkin başlangıçlı glokom tipi bulunmaktadır. Tamamlanan genom çapında ilişkilendirme çalışmaları sonucunda; Primer Açık Açılı Glokom’un: ABCA1, AFAP1, GMDS, PMM2, TGFBR3, FNDC3B, ARHGEF12, GAS7, FOXC1, ATXN2, TXNRD2, Primer Açı Kapanması Glokomu’nun: EPDR1, CHAT, GLIS3, FERMT2, DPM2-FAM102 ve Eksfoliyasyon Sendromu Glokomu’nun ise CACNA1A genleriyle ilişkili olduğu belirlenmiştir. Yapılan bu çalışmalar hastalık patogenezine katkıda bulunan önemli biyolojik yolları ve süreçleri tanımlamaya yardımcı olmaktadır.

___

  • 1. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ. 1995;73:115–121.
  • 2. Wiggs JL, Pasquale LR. Genetics of glaucoma. Hum Mol Genet. 2017;26(R1): R21–R27.
  • 3. Allen KF, Gaier ED, Wiggs JL. Genetics of primary inherited disorders of the optic nerve: clinical applications. Cold Spring Harb Perspect Med. 2015;5(7):a017277.
  • 4. VİKİPEDİ. Available from: https://tr.wikipedia.org/wiki/Glokom. Accessed: 24 September 2022.
  • 5. Miller, MA, Fingert, JH, Bettis, DI. Genetics and genetic testing for glaucoma. Curr Opin Ophthalmol. 2017;28(2):133-138.
  • 6. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng, CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmol. 2014;121:2081–2090.
  • 7. Anderson DR, Drance SM, Schulzer M. Natural history of normal-tension glaucoma. Ophthalmol. 2001;108:247–253.
  • 8. Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8:e1002654.
  • 9. Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 2016;48:189–194.
  • 10. Loomis SJ, Kang JH, Weinreb RN, Yaspan B, Cooke Bailey JN, Gaasterland T et al. Association of CAV1/CAV2 genomic variants with primary open-angle glaucoma overall and by gender and pattern of visual field loss. Ophthalmol. 2014;121:508–516.
  • 11. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–267.
  • 12. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–242.
  • 13. Vithana EN, Khor CC, Qiao C, Nongpiur ME, George R, Chen LJ, Do T et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2012;44:1142– 1146.
  • 14. Khor CC, Do T, Jia H, Nakano M, George R, Abu-Amero K et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48:556–562.
  • 15. Streeten BW, Li ZY, Wallace RN, Eagle RC, Keshgegian AA. Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome. Arch Ophthalmol. 1992;110:1757–1762.
  • 16. Pasquale LR, Borras T, Fingert JH, Wiggs JL, Ritch R. Exfoliation syndrome: assembling the puzzle pieces. Acta Ophthalmol. 2016;94:e505–e512.
  • 17. Damji KF, Bains HS, Amjadi K, Dohadwala AA, Valberg JD, Chevrier R et al. Familial occurrence of pseudoexfoliation in Canada. Can J Ophthalmol. 1999;34:257–265.
  • 18. Taylor HR. Pseudoexfoliation, an environmental disease? Trans Ophthalmol Soc U K (1962). 1979;99(2):302–307.
  • 19. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–1400.
  • 20. Cousins CC, Kang JH, Bovee C, Wang J, Greenstein SH, Turalba A et al. Nailfold capillary morphology in exfoliation syndrome. Eye (Lond). 2017;31(5):698-707.
  • 21. Praveen MR, Shah SK, Vasavada AR, Diwan RP, Shah SM, Zumkhawala BR et al. Pseudoexfoliation as a risk factor for peripheral vascular disease: a case-control study. Eye (Lond). 2011;25:174–179.
  • 22. Brooks AM, Gillies WE. The development of microneovascular changes in the iris in pseudoexfoliation of the lens capsule. Ophthalmol. 1987;94:1090–1097.
  • 23. Wirostko BM, Curtin K, Ritch R, Thomas S, Allen-Brady K, Smith KR et al. Risk for exfoliation syndrome in women with pelvic organ prolapse: A Utah project on exfoliation syndrome (UPEXS) study. JAMA Ophthalmol. 2016;134:1255–1262.
  • 24. Fan BJ, Pasquale LR, Rhee D, Li T, Haines JL, Wiggs JL. LOXL1 promoter haplotypes are associated with exfoliation syndrome in a U.S. Caucasian population. Invest Ophthalmol Vis Sci. 2011;52(5):2372–2378.
  • 25. Founti P, Haidich AB, Chatzikyriakidou A, Salonikiou A, Anastasopoulos E, Pappas T et al. Ethnicity-based differences in the association of LOXL1 polymorphisms with pseudoexfoliation/pseudoexfoliative glaucoma: a meta-analysis. Ann Hum Genet. 2015;79(6):431–450.