Enterik Sinir Sistemi: Nitrik Oksit ve Vazoaktif İntestinal Polipeptid Arasındaki İlişki

Nitrik oksit ve vazoaktif intestinal polipeptid non-adrenerjik non-kolinerjik sinirlerin düz kas hücresini gevşetici yönde etki oluşturan temel iki medyatörüdür. Bu iki molekül arasındaki ilişki halen tartışma konusudur. Bu derlemede günümüze kadar yapılan çalışmalardan elde edilen bulgular sunulmuştur.

Enteric Nervous System: The Relationship Between Nitric Oxide and Vasoactive İntestinal Polypeptide

Nitric oxide and vasoactive intestinal polypeptide are the primary neurotransmitters of the non-adrenergic non-cholinergic nerves with relaxing effects on smooth muscle cells. The relationship of these two molecules is still a matter of debate. In this review, the results obtained from the studies conducted so far have been presented.

___

  • Christensen J, Fang S. Colocalization of NADPH-diaphorase activity and certain neuropeptides in the esophagus of opossum (Didelphis Virginia). Cell Tissue Res. 1994; 278 (3): 557-62.
  • Vittoria A, Costagliola A, Carrese E, et al. Nitric oxide-containing neurons in the bovine gut, with special reference to their relationship with VIP and galanin. Arch Histol Cytol. 2000; 63 (4): 357-68.
  • Tottrup A, Svane D, Forman A. Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Physiol. 1991; 260: G385-389.
  • De Man J G, Pelcksman P A, Boeckxstaens G E, et al. The role of nitric oxide in inhibitory non-adrenergic non-cholinergic neurotransmission in the canine lower oesophageal sphincter. Br J Pharmacol. 1991; 103: 1092-1096.
  • Yamato S, Saha JK, Goyal RK. Role of nitric oxide in lower esophageal sphincter relaxation to swallowing. Life Sci. 1992; 50(17): 1263-1272.
  • Ny L, Alm P, Ekstrom P, et al. Nitric oxide synthase-containing, peptide-containing, and acetylcholinesterase-positive nerves in the cat lower oesophagus. Histochem J. 1994; 26(9): 721-733.
  • Ny L, Alm P, Larsson B, et al. Nitric oxide pathway in cat esophagus: localization of nitric oxide synthase and functional effects. Am J Physiol. 1995; 268: G59-70.
  • Kortezova N, Mizhorkova Z, Milusheva E, et al. Non-adrenergic non-cholinergic neuron stimulation in the cat lower esophageal sphincter. Eur J Pharmacol. 1996; 304: 109-15.
  • Shahin W, Murray JA, Clark E, et al. Role of cGMP as a mediator of nerve-induced motor functions of the opossum esophagus. Am J Physiol. 2000; 279: G567-74.
  • Jun CH, Lee TS, Sohn UD. NO/cyclic GMP pathway mediates the relaxation of feline lower oesophageal sphincter. Auton Autacoid Pharmacol. 2003; 23: 159-66.
  • Fare R, Auli M, Lecea B, et al. Pharmacologic characterization of intrinsic mechanisms controlling tone and relaxation of porcine lower esophageal sphincter. J Pharmacol Exp Ther. 2006; 316: 1238-48.
  • Abrahamsson H. Non-adrenergic non-cholinergic nervous control of astrointestinal motility patterns. Arch Int Pharmacodyn Ther. 1986; 280: 50-61.
  • Grider JR, Cable MB, Said SI, et al. Vasoactive intestinal peptideas a neural mediator of gastric relaxation. Am J Physiol. 1985; 248: G73-8.
  • Lefebvre RA. Study on the possible neurotransmitter of the non-adrenergic non-cholinergic innervation of the rat gastric fundus. Arch Int Pharmacodyn. 1986; 16 (suppl.): 110-36.
  • D’Amato M, De Beurme FA, Lefebvre RA. Comparison of the effect of vasoactive intestinal
  • polypeptide and non-adrenergic non-cholinergic neurone stimulation in the cat gastric fundus. Eur J Pharmacol. 1988; 152: 71-82.
  • De Beurme FA, Lefebvre RA. Vasoactive intestinal polypeptide as possible mediator of relaxation in the rat gastric fundus. Br J Pharmacol. 1988; 40: 711-5.
  • D’Amato M, Curro D, Ciabattoni G, et al. Is peptide histidine isoleucine an inhibitory non
  • adrenergic non-cholinergic neurotransmitter in the rat gastric fundus? Arch Int Pharmacodyn. 1990; 303: 216-231.
  • Belai A, Lefebvre RA, Burnstock G. Motor activity and neurotransmitter release in the gastric fundus of streptozotocin-diabetic rats. Eur J Pharmacol. 1991; 194: 225-234.
  • D’Amato M, Curro D, Montuschi P, et al. Release of vasoactive intestinal polypeptide from the
  • rat gastric fundus. Eur J Pharmacol. 1992; 105: 691-695.
  • Li C G, Rand M J. Nitric oxide and vasoactive intestinal polypeptide mediate non-adrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol. 1990; 191: 303-309.
  • Waldman SA, Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987; 39: 163- 96.
  • Gozes I, Brenneman DE. VIP: molecular biology and neurological function. Mol Neurobiol. 1989; 3: 201-36.
  • Ito S, Kurokawa A, Ohga A, et al. Mechanical, electrical and cyclic nucleotide responses to peptide VIP and inhibitory nevre stimulation in rat stomach. J Physiol (London). 1990; 430: 337-53.
  • Boeckxstaens GE, Pelckmans PA, Bogers JJ, et al. Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther.1991; 256: 441-447.
  • Lefebvre RA, Baert E, Barbier AJ. Influence of NG-nitro-L-arginine on non-adrenergic non- cholinergic relaxation in the guinea-pig gastric fundus. Br J Pharmacol. 1992; 106: 173-179.
  • Grider JR, Murthy KS, Jin J-G, et al. Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol. 1992; 262: G774-G778.
  • D’Amato M, Curro D, Montuschi P. Evidence for dual components in the non-adrenergic non
  • cholinergic relaxation in the rat gastric fundus: role of endogenous nitric oxide and vasoactive intestinal polypeptide. J Auton Nerv Syst. 1992; 37: 175-86.
  • Boeckxstaens GE, Pelckmans PA, De Man JG, Bogers et al. Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus. Arh Int Pharmacodyn Ther. 1992; 318: 107-15.
  • Schmidt HHHW, Gagne GD, Nakane M, et al. Mapping of neuronal nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneuronal functions for nitirnergic signal transduction. Histochem Cytochem. 1992; 40: 1439-1456.
  • Forster ER, Southam E. The intrinsic and vagal extrinsic innervation of the rat stomach contans nitric oxide synthase. Neuroreport. 1993; 4: 275-278.
  • Jin JG, Murthy KS, Grider JR, et al. Activation of distinct cAMP- and cGMP-dependent pathways by relaxant agents in isolated gastric muscle cells. Am J Physiol. 1993; 27: G470- G477.
  • Barbier AJ, Lefebvre RA. Involvement of the L-arginine: Nitric oxide pathway in nonadrenergic noncholinergic relaxation of the cat gastric fundus. J Pharmacol Exp Ther. 1993; 266: 172- 178.
  • McLaren A, Li CG, Rand MJ. Mediators of nicotine-induced relaxations of the rat gastric fundus. Clin Exp Pharmacol Physiol. 1993; 20: 451-7.
  • Kojima S, Ishizaki R, Shimo Y. Investigation of nicotine-induced relaxation of circular smooth muscle of the quinea-pig gastric fundus. Eur J Pharmacol. 1993; 241: 171-5.
  • Desai KM, Warner TD, Bishop AE, et al. Nitric oxide, and not vasoactive intestinal peptide, as the main neurotransmitter of vagally induced relaxation of the guinea pig stomach. Br J Pharmacol. 1994; 113: 1197-1202.
  • Murthy KS, Makhlouf GM. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide-dependent activation of membrane-bound NO synthase in smooth muscle mediated by pertussis toxin-sensitive Gi1-2. J Biol Chem. 1994a; 269: 15977-15980.
  • Murthy KS, Jin J-G, Makhlouf GM. Inhibition of nitric oxide synthase activity in dispersed gastric muscle cells by protein kinase C. Am J Physiol. 1994b; 266: G161-G165.
  • Lefebvre RA, Smiths GJM, Timmermans J-P. Study of NO and VIP as non-adrenergic non- cholinergic neurotransmitters in the pig gastric fundus. Br J Pharmacol. 1995; 116: 2017- 2026.
  • Jin J-G, Murthy KS, Grider JR, et al. Stoichiometry of neurally induced VIP release, NO formation, and relaxation in rabbit and rat gastric muscle. Am J Physiol. 1996; 271: G357- G369.
  • Mashimo H, He XD, Huang PL, et al. Neuronal constitutive nitric oxide synthase is involved in murine enteric inhibitory neurotransmission. J Clin İnvest. 1996; 98: 8-13.
  • Ohno N, Xue L, Yamamoto Y, et al. Properties of the inhibitory junction potential in smooth muscle of the guinea-pig gastric fundus. Br J Pharmacol. 1996; 117: 974-978.
  • Katsoulis S, Schmidt WE, Schwarzhoff R, et al. Inhibitory transmission in guinea pig stomach mediated by distinct receptors for pituitary adenylate cyclase-activating peptide. J Pharmacol Exp Ther. 1996; 278: 199-204.
  • Pfeifer A, Klatt P, Massberg S, et al. Defective smooth muscle regulation in cGMP kinase I- deficient mice. EMBO J. 1998; 17: 3045-3051.
  • Glasgow I, Mattar K, Krantis A. Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. Am J Physiol. 1998; 275: G889-896.
  • Bayguinov O, Keef KD, Hagen B, et al. Paralel pathways mediate inhibitory effects of vasoactive intestinal polypeptide and nitric oxide in canine fundus. Br J Pharmacol. 1999; 126: 1543-1552.
  • Ny L, Pfeifer A, Aszodil A, et al. Impaired elaxation of stomach smooth muscle in mice lacking cyclic GMP-dependent protein kinase I. Br J Pharmacol. 2000; 129: 395-401.
  • Tonini M, De Giorgio R, De Ponti R, et al. Role of nitric oxide- and vasoactive intestinal polypeptide-containing neurons in human gastric fundus strip relaxation. Br.J.Pharmacol. 2000; 129: 12-20.
  • Dick JMC, Van Geldre LA, Timmermans JP, et al. Investigation of the interaction between nitric oxide and vasoactive intestinal polypeptide in the guinea-pig gastric fundus. Br J Pharmacol. 2000; 129: 751-763.
  • Dick JMC, Lefebvre RA. Interplay between nitric oxide and vasoactive intestinal polypeptide in the pig gastric fundus smooth muscle. Eur J Pharmacol. 2000; 397: 389-397.
  • Ergün Y, Öğülener N, Dikmen A. Involvement of nitric oxide in non-adrenergic non-cholinergic
  • relaxation and action of vasoactive intestinal polypeptide in circular of the rat gastric fundus. Pharmacol Res. 2001; 44: 221-228.
  • Ergün Y, Öğülener N. Evidence for the interaction between nitric oxide and vasoactive
  • intestinal polypeptide in the mouse gastric fundus. J Pharmacol Exp Ther. 2001; 299: 945- 950.
  • Dick JMC, Van Molle W, Libert C, et al. Antisense knockdown of inducible nitric oxide synthase inhibits the relaxant effect of VIP in isolated smooth muscle cells of the mouse gastric fundus. Br J Pharmacol. 2001; 134: 425-433.
  • Dick JMC, Van Molle W, Brouckaert P, et al. Relaxation by vasoactive intestinal polypeptide in the gastric fundusof nitric oxide synthase-deficient mice. J Physiol. 2002; 538: 133-143.
  • Pimont S, Bruley Des Varannes S, Le Neel JC, et al. Neurochemical coding of myenteric neurons in the human gastric fundus. Neurogastroenterol Motil. 2003; 15: 655-662.
  • Martins SR, Bicudo R, Oliveira RB, et al. Evidence fort he participation of the L-arginine-nitric oxide pathway in neurally induced relaxation of the isolated rat duodenum. Braz J Med Biol Res. 1993; 26: 1325-1335.
  • Krantis A, Mattar K, Glasgow I. Rat gastroduodenal motility in vivo: interaction of GABA and VIP in control of spontaneous relaxations. Am J Physiol. 1998; 275: G897-903.
  • Yamamoto H, Kuwahara A, Fujimura M, et al. Motor activity of vascularly perfused rat düodenum. 2. Effects of VIP, PACAP27 and PACAP38. Neurogastroenterol Motil. 1999; 11: 235-241.
  • Simula ME, Brookes SJ, Meedeniya AC, et al. Distribution of nitric oxide synthase and vasoactive intestinal polypeptide immunoreactivity in the sphincter of oddi and düodenum of the possum. Cell Tissue Res. 2001; 304: 31-41.
  • Brehmer A, Schrodl F, Neuhuber W. Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut. Histochem Cell Biol. 2006; 125: 557-565.
  • Simula ME, Brookes SJ, Meedeniya AC, et al. Distribution of nitric oxide synthase and vasoactive intestinal polypeptide immunoreactivity in the sphincter of oddi and duodenum of the possum. Cell Tissue Res. 2001; 304: 31-41.
  • Zhang M, Shimojo H, Ehara T, et al. Decreased distribution of nitric oxide synthase and vasoactive intestinal polypeptide positive nerve cells in the sphincter of Oddi in humans with pancreatobiliary diseases. Arch Histol Cytol. 2005; 68: 121-131.
  • Sari R, Peitl B, Kovacs P, et al. Cyclic GMP-mediated activation of a glibenclamide-sensitive mechanism in the rabbit sphincter of oddi. Dig Dis Sci. 2004; 49: 514-520.
  • Rakestraw PC, Synder JR, Woliner MJ, et al. Involvement of nitric oxide in inhibitory neuromuscular transmission in equine jejunum. Am J Vet Res. 1996; 57: 1206-1213.
  • Satoh Y, Takeuchi T, Yamazaki Y, et al. Mediators of nonadrenergic, noncholinergic relaxation in longitudinal muscle of the intestine of ICR mice. J Smooth Muscle Res. 1999; 35: 65-75.
  • Murr MM, Balsiger BM, Farrugia G, et al. Role of nitric oxide, vasoactive intestinal polypeptide, and ATP in inhibitory neurotransmission in human jejunum. J Surg Res. 1999; 84: 8-12.
  • Matsuyama H, Unno T, El-Mahmoudy AM, et al. Peptidergic and nitrergic inhibitory neurotransmissions in the hamster jejunum: regulatio of vasoactive intestinal peptide release by nitric oxide. Neuroscience. 2002; 110: 779-788.
  • De Man JG, De Winter BY, Seerden TC, et al. Functional evidence that ATP or a related purine is an inhibitory NANC neurotransmitter in the mouse jejunum: study on the identity of P2X and P2Y purinoceptors involved. Br J Pharmacol. 2003; 140: 1108-1116.
  • Vanneste G, Robberecht P, Lefebvre RA. Inhibitory pathways in the circular muscle of rat jejunum. Br J Pharmacol. 2004; 143: 107-118.
  • He XD, Goyal RK. Nitric oxide involvement in the peptide VIP-associated inhibitory junction potential in the guinea-pig ileum. J Physiol. 1993; 461: 485-499.
  • Grider JR, Jin J-G. Vasoactive intestinal peptide release and L-citrulline production from isolated ganglia of the myenteric plexus: evidence for regulation of vasoactive intestinal peptide release by nitric oxide. Neurosci. 1993; 54: 521-526.
  • Belai A, Burnstock G. Evidence for coexistence of ATP and nitric oxide in non-adrenergic, non-cholinergic (NANC) inhibitory neurones in the rat ileum, colon and anococcygeus muscle. Cell Tissue Res. 1994; 278: 197-200.
  • Smits GJ, Lefebvre RA. ATP and nitric oxide: inhibitory NANC neurotransmitters in the ongitudinal muscle-myenteric plexus preparation of the rat ileum. Br J Pharmacol. 1996; 118: 695-703.
  • Rekik M, Delvaux M, Tack I, et al. VIP-induced relaxation of guinea-pig intestinal smooth muscle cells: sequential involvement of cyclic AMP and nitric oxide. Br J Pharmacol. 1996; 118: 477-484.
  • Allescher HD, Kurjak M, Huber A, et al. Regulation of VIP release from rat enteric nerve termainals: evidence for a stimulatory effect of NO. Am J Physiol. 1996; 271: G568-574.
  • Holzer P. Involvement of nitric oxide in the substance P-induced inhibition of intestinal peristalsis. Neuroreport. 1997; 8: 2857-2860.
  • Ekblad E, Sundler F. Distinct receptors mediate pituitary adenylate cyclase-activating peptide- and vasoactive intestinalpeptide-induced relaxation of rat ileal longitudianl muscle. Eur J Pharmacol. 1997; 334: 61-6.
  • Kurjak M, Fritsch R, Saur D, et al. Functional coupling between nitric oxide synthesis and VIP release within enteric nevre terminals of the rat: involvement of protein kinase G and phosphodiesterase 5. J Physiol. 2001; 543: 827-836.
  • Boeckxstaens GE, Pelckmans PA, Bult H, et al. Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction. Eur J Pharmacol.1990; 190: 239- 246.
  • Boeckxstaens GE, Pelckmans PA, Bult H, et al. Evidence for nitric oxide as mediator of non- adrenergic non-cholinergic relaxations induced by ATP and GABA in the canine gut. Br J Pharmacol. 1990; 102: 434-8.
  • Huizinga JD, Tomlinson J, Pintin-Quenzada J. Involvement of nitric oxide in nerve-mediated inhibition and action of vasoactive intestinal peptide in colonic smooth muscle. J Pharmacol Exp Ther. 1992; 200: 803-808.
  • Grider JR. Interplay of VIP and nitric oxide in the regulation of the descending relaxation phase of peristalsis. Am J Physiol. 1993; 264: G334-340.
  • Schworer H, Clemens A, Katsoulis H, et al. Pituitary adenylate cyclase-activating peptide is a potent modulator of human colonic motility. Scand J Gastroenterol. 1993; 28: 625-632.
  • Grider JR. Interplay of VİP and nitric oxide in regulation of the descending relaxation phase of
  • peristalsis. Am J Physiol. 1993; 264: G334-340.
  • Boeckxstaens GE, Pelckmans PA, Herman AG, et al. Involvement of nitric oxide in the inhitory innervation of the human isolated colon. Gastroenterol. 1993; 104: 690-697.
  • Berezin I, Synder SH, Bredt DS, et al. Ultrastructural localization of nitric oxide synthase in canine small intestine and colon. Am J Physiol. 1994; 266: C981-9.
  • Keef KD, Shuttleworth CW, Xue C, et al. Relationship between nitric oxide and vasoactive intestinal polypeptide in enteric inhibitory neurotransmission. Neuropharmacology. 1994; 33: 1303-1314.
  • Grider JR, Katsoulis S, Schmidt WE, et al. Regulation of the descending relaation phase of intestinal peristalsis by PACAP. J Auton Nerv Syst. 1994; 50: 151-9.
  • Briejer MR, Akkermans LM, Meulemans AL, et al. 5-HT-induced neurogenic relaxations of the guinea-pig proximal colon: investigation into the role ofATP and VİP in addition to nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995; 351: 126-135.
  • Gaumnitz E, Sweet MA, Sengupta A, et al. Nitrinergic and peptidergic innervations and their inter-relationships in human colon. Neuropeptides. 1995; 29: 1-9.
  • Keranen U, Vanhatalo S, Kiviluoto T, et al. Co-localization of NADPH diaphorase reactivity and vasoactive intestinal polypeptide in human colon. J Auton Nerv Syst. 1995; 54: 177-183.
  • Teng B, Murthy KS, Kuemmerle JF, et al. Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells. Am J Physiol. 1998; 275: G342-51.
  • Kumano K, Fujimura M, Oshima S, et al. Effects of VIP and NO on the motor activity of vascularly reperfused rat proximal colon. Peptides. 2001; 22: 91-98.
  • Rattan S, Chakder S. Role of nitric oxide as a mediator of internal anal sphincter relaxation. Am J Physiol. 1992; 262: G107-112.
  • Tottrup A, Glavind EB, Svane D. Involvement of the L-arginine-nitric oxide pathway in internal anal sphincter. Gastroenterology. 1992; 102: 409-415.
  • Chakder S, Rattan S. Release of nitric oxide by activation of nonadrenergic noncholinergic neurons of internal anal sphincter. Am J Physiol. 1993a; 264: G7-12.
  • Chakder S, Rattan S. Involvement of cAMP and cGMP in relaxation of internal anal sphincter by neural stimulation, VIP, and NO. Am J Physiol. 1993b; 264: G702-7.
  • Lynn RB, Sankey SL, Chakder S, et al. Colocalization of NADPH-diaphorase staining and VIP immunoreactivityin neurons in opozzum internal anal sphincter. Dig Dis Sci. 1995; 40: 781-91.
  • Chakder S, Rattan S. Evidence for VİP-induced increase in NO production in myenteric neurons of opossum internal anal sphincter. Am J Physiol. 1996; 270: G492-7.
  • Rattan S, Chakder S. Excitatory and inhibitory actions of pituitary adenylate cyclase- activating peptide (PACAP) in the internal sphincter smooth muscle: sites of action. J Pharmacol Exp Ther. 1997; 283: 722-8.
  • Chakder S, Rattan S. Involvement of pituitary adenylate cyclase-activating peptide in opossum internal anal sphincter relaxation. Am J Physiol. 1998; 275: G769-77.