SU ÜRÜNLERİ TOKSİNLERİ VE ZEHİRLENMELERİ

Su ürünleri zehirlenmeleri, toksinleri içeren balık ve kabuklu su ürünlerinin tüketimiyle oluşan besin kaynaklı hastalıktır. Kabuklu su ürünleri toksinlerini bazı dinoflagellata türleri üretirler. Çift kabuklular, özellikle midye, istiridye ve deniz tarağı süzerek beslenme yaparak birçok toksini biriktirirler. Kabuklu su ürünleri, bu toksinlerin tehlikeli etkilerini önleyici mekanizmaya sahiptir. Toksinlerin kabuklu su ürünlerinde ve balıklarda zararlı etkilerinin olmamasına rağmen, toksin içeren su ürünlerini yiyen kişiler için zehirli olabilir. Bu toksinler, pişirme işlemleri ile giderilemezler. Balık zehirlenmesine sebep olan toksinler bozulma bakterileri tarafından üretilir. Balık (tuna, sardalya vb.) bozulması toksinlerin ortaya çıkmasına sebep olur. Su ürünleri zehirlenmeleri (paralitik kabuklu su ürünü zehirlenmesi (PSP), ciguatera balık zehirlenmesi, skombroid zehirlenmesi, vb.) ciddi bir hastalıktır ve bu hastalığın sorumlusu olan toksinler (saksitoksin, tetradotoksin, vb.), su ürünleri güvenliği ve halk sağlığı için büyük bir risk yaratır. Paralitik kabuklu su ürünü zehirlenmesi (PSP) ve skombroid zehirlenmesi, en sık görülen su ürünleri zehirlenmeleridir. Su ürünleri zehirlenmesi için bir antidot bulunmaması, bu besin kaynaklı hastalığı daha da ciddi şekle getirir. Kabuklu su ürünleri toksin seviyelerinin azalması için, temiz suda bekletme, zehirlenmeden korunmak için çözüm olabilir. Bu incelemede, toksinlerin karakteristikleri ve insan sağlığına etkileri tartışılmıştır

SEAFOOD TOXINS AND POISONINGS

Seafood poisoning is the foodborne illness associated with the consumption of shellfish and fish that contain toxins. Shellfish toxins are produced by certain dinoflagellate species. Bivalve shellfish, especially mussels, clams and oyster can accumulate so many toxins by ingesting with filter-feeding. Shellfish have mechanisms that prevent the hazardous effects of these toxins. Although the toxins do apparently not harm the shellfish and fish, humans eating toxic seafood may become poisoned. These toxins can not be eliminated by cooking procedures. Toxins that cause poisining on fish are produced by spoilage bacteria. The deterioration of fish (tuna, sardine etc.) causes toxins to occur. Seafood poisoning (paralytic shellfish poisoning (PSP), ciguatera poisoning, scombroid poisoning, etc.) is a serious illness and the toxins (saxitoxin, tetrodotoxins, etc.) that are responsible for this illness pose a great risk to seafood safetyand public health. Paralytic shellfish poisoning (PSP) and scombroid poisoning are common seafood toxicity problems. The inability of finding an antidote for seafood poisoning makes this foodborne illness even more serious. By waiting shellfish in clean water to obtain the reduction on toxin levels can be the solution for protection from poisoning. In this review, the characteristics of toxins and their effects on human health are discussed.

___

  • Badre, S.,(2014). Bioactive Toxins from Stinging Jellyfish, Toxicon, Special Issue : Freshwater and Marine Toxins, 91,1, 114-125.
  • Bhakuni, D.S., Rawat, D.S.,(2005). Bioactive marine natural products, Anamaya Publishers, New Delhi, India.
  • Bouaicha, N., Hennion, M.C., Sandra, P., (1997). Determination of okadaic acid by micellar electrokinetic chromatography with ultraviolet detection. Toxicon, 35,2, 273-281.
  • Carvalho-de-Souza, J.L., Cassola, A.C. (2009). Eugenol blocks Tetrodotoxin- Resistant Nav Channels. Biophysical Journal, 96, 3, 251a.
  • Campas, M.,Prieto-Simon, B., Marty, J.-L.,(2007). Biosensors to detect marine toxins: Assessing seafood safety, Talanta, 72, 884-895.
  • Campbell, K., Haughey, S. (2014). Natural Toxicants: Tetrodotoxin. Encyclopedia of Food Safety. Vol.2, Hazard and Diseases, 277-282.
  • Cordier,S., Monfort, C., Miossec, L., Richardson, S., Belin, C.,(2000). Ecological analysis of digestive cancer mortality related to contamination by diarrhetic shellfish poisoning toxins along the coasts of France , Environmental Research, 84,2, 145-150.
  • Darracq, M.A.,(2014). Ciquatoxin. Encyxlopedia of Toxicology (Third Edition), 963-965.
  • Dickey, R.W., Plakas, S. M.,(2010). Ciguatera: A public health perspective, Toxicon, 56,2, 123-136.
  • DePaola, A. (2014). Safety of Food and Beverages: Seafood. Encyclopedia of Food Safety, Volume:3, Foods, Materials, Technologies and Risks, 260-267.
  • Eldridge, D., Holstege, C.P.( 2005). Ciguatoxin, Encyclopedia of Toxicology (Second Edition), 610- 611.
  • Etheridge, S.M., (2010). Paralytic shellfish poisoning: Seafood safety and human health perspectives, Toxicon, 56, 108-122.
  • Ferreiro,S.F., Vilarino,N., Louzao, M.C., Nicolaou, K.C., Frederick, M.O., Botana, L.M., (2014). In vitro chronic effects on hERG channel caused by the marine biotoxin azaspiracid-2, Toxicon, 91,1, 69-75.
  • Fux, E., Smith,J.L., Tong, M., Guzmán, L., Anderson, D.M.,(2011). Toxin profiles of five geographical isolates of Dinophysis spp. from North and South America, Toxicon, 57, 275-287.
  • Gold, E.P., Jacocks, H.M., Bourdelais, A.J., Baden, D.G., (2013). Brevenal, a brevetoxin antagonist from Karenia brevis, binds to a previously unreported site on mammalian sodium channels, Harmful Algae, 26,12-19.
  • Ito, E., Satake, M., Ofuji, K., Kurita, N., McMahon, T., James, K., Yasumoto, T., (2000). Multiple organ damage caused by a new toxin azaspiracid, isolated from mussels produced in Ireland, Toxicon, 38, 7, 917-930.
  • James, K.J., Moroney, C., Roden, C., Satake, M., Yasumoto, T., Lehane, M., Furey, A., (2003). Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning, Toxicon, 41,2,145-151.
  • James, K.J., O’Driscoll, D., Fernandez, J.G., Furey, A., (2008). Phycotoxins, Comrehensive Analytical Chemistry, 429-456.
  • Jeffery, B., Barlow, T., Moizer, K., Paul,S., Boyle, C.,(2004). Amnesic shellfish poison, Food and Chemical Toxicology, 42,4, 545-557.
  • Hall, S. (1996). Seafood toxins: outbreaks, research, and management. Toxicon, 34, 3, 307.
  • Haystead,T.A., Sim,A.T., Carling D., Honnor, R.C., Tsukitani, Y., Cohen, P., Hardie, D:G., (1989). Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism, Nature,337,78-81.
  • Hungerford,J.M.,(2010). Scombroid poisoning: A review, Toxicon, 56, 231-243.
  • Hwang, D.F., Noguchi, T. (2007). Tetrodotoxin Poisioning, Advances in Food and Nutrition Research, 52,141- 236.
  • Gad, S.E. (2014). Saxitoxin.Reference Module in Biomedical Sciences, Encyclopedia of Toxicology (Third edition), 218-220.
  • Gago- Martinez, A., Rodriguez-Vazquez, J.A.( 2000). Marine Toxins: Chromatography, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, from Encylopedia of Seperation, Science, 3269- 3277.
  • Gold, E.P., Jacocks, H.M., Bourdelais, A.J., Baden, D.G., (2013). Brevenal, a brevetoxin antagonist from Karenia brevis, binds to a previously unreported site on mammalian sodium channels, Harmful algae, 26, 12-19.
  • Kalaitzis, J.A., Chau, R., Kohli, G.S., Murray, S.A., Neilan, B.A., (2010). Biosyntheis of toxic naturally-occurring seafood contaminants, Toxicon, 56, 244-258.
  • Karimi, G., Lari, P. (2014). Tetrodotoxin. Reference Module in Biomedical Sciences Encyclopedia of Toxicology(Third Edition), 515-518.
  • Kiernan, M.C. (2009). IN70-FR-01 Marine Toxin Poisining, Journal of Neurological Sciences, 285, 1, 50-51
  • Lefebvre, K.A., Robertson, A., (2010). Domoic acid and human exposure risks: A review, Toxicon, 56 (2): 218-230.
  • Lewis, R.J. (1992). Ciguatoxins are potent ichthyotoxins, Toxicon, 30,2, 207-211.
  • Lipp, E.K., Rose, J.B., (1997). The role of seafood in foodborne diseases in the United States of America, Revue.scientifique et.technique., 16, 2:620-40.
  • Manerio, E., Rodos,V.L., Costas, E., Hernandez, J.M., (2008). Shellfish consumption: A major risk factor for colorectal cancer, Medical Hypotheses, 70,2,409-412.
  • Matsumoto, T., Kiriake, A., Ishizaki, S., Watabe, S., Nagashima, Y. (2015). Biliary excretion of tetrodotoxin in the cultured pufferfish Takifugu rubripes juvenile after intramuscular administration, Toxicon, 93, 98-102.
  • Morrow, J.D., Margolies, G.R., Rowland, J., Roberts, L.J., (1991). Evidence that histamine is the cause toxin of scombroid-fish poisoning, The new England journal of medicine, 324, 11.
  • Mos, L., (2001). Domoic acid: a fascinating marine toxin, Environmental toxicology and pharmacology, 9,3, 79-85.
  • Narahashi, T. (2014). Tetrodotoxin. Encyclopedia of the Neurological Sciences (Second Edition), 420-422.
  • Noguchi, T., Arakawa, O., Takatani, T. (2006). TTX accumulation in pufferfish. Comparative Biochemistry and Physicology Part D : Genomics and Proteımics, 1,1, 145-152.
  • Pierce, R.H., Henry, M.S., Blum, P.C., Hamel, S.L., Kirkpatrick, B., Cheng, Y.S., Zhou,Y., Irvin, C.M., Naar, J., Weidner, A., Fleming, L.E., Backer, L.C., Baden, D.G.,( 2005). Brevetoxin composition in water and marine aerosol along a Florida beach: Assessing potential human exposure to marine biotoxins, Harmful algae, 4, 6, 965-972.
  • Pratheepa, V., Vasconcelos, V. (2013). Microbial diversity associated with tetrodotoxin production in marine organisms. Environmental Toxicology and Pharmacology, 36, 3, 1046-1054.
  • Puschner, B., Roegner, A.( 2012). Cyanobacterial (blue-green algae) toxins. Chapter 72, Veterinary Toxicology (Second Edition), 953-965.
  • Reboreda,A., Lago,J., Chapela, M.-J., Vieites, J.M., Botana, L.M., Alfonso, A., Cabado, A.G., (2010). Decrease of marine toxin content in bivalves by industrial processes, Toxicon, 55, 235-243.
  • Salas, R., Tillmann,U.,John, U., Kilcoyne, J., Burson, A., Cantwell, C., Hess, P., Jauffrais, T., Silke, J.,( 2011). The role of Azadinium spinosum (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels, Harmful Algae, 10,6,774-783.
  • Salzman, Matthew, Madsen, J.M., Greenberg, M.I. (2006). Toxins :Bacterial and Marine Toxins, Clinics in Laboratory Medicine, 26, 2, 397-419.
  • Sanchez-Guerrero, I., Vidal, J.B., Escudero, A.I.,(1997). Scombroid fish poisoning: A potentially life-threatening allergic-like reaction, Journal of Allergy and Clinical Immunology, 100, 3, 433-434.
  • Sassolas, A., Hayat A., Catanante, G., Marty, J.( 2013). Detection of marine toxin okadaic acid: Assessing seafood safety. Talanta, 105, 306- 316.
  • Scharman, E. J. (2005). Tetrodotoxin. Encyclopedia of Toxicology (Second Edition). 161-162.
  • Toda, M., Uneyama, C., Kasuga, F. (2014). Trends of tetrodotoxin poisonings caused by puffer fish in Japan. Toxicology Letters, 229, 10, 184.
  • Tubaro, A., Sosa, S., Hungerfold, J. (2012). Toxicology and diversity of marine toxins- Chapter 69. Veterinary Toxicology, (Second Edition), 896- 934.
  • Zendong, Z., Brissard, C., Herrenknecht, C., Tixier, C., Abadie, E., Mondeguer, F., Sechet, V., Amzil, Z., Hess, P. (2014). 10 Extended evaluation of mixed –mode and lipophilic sorbents for passive sampling of marine toxins, Toxicon, Special Issue: Freshwater and Marine Toxins, 91, 1, 168-169.