Toxicity of environmentally important micropollutants on three trophic levels

Micropollution is a serious environmental problem caused by continuous entry of trace quantities of toxic chemical substances into the aquatic environment. In the present study, three trophic levels of the aquatic ecosystems were used to evaluate the acute toxicities of environmentally important micropollutants including heavy metals, pesticides and drugs. There is a scarcity of information on toxicity of the studied substances on marine water algae. Among studied micropollutants, the most toxic chemical to Daphnia magna and Danio rerio was found to be 1-Chloro-2,4 dinitrobenzene with EC50 of 0.002 and 4.2 mg/L, respectively. Although this compound was also toxic to marine algae, Phaeodactylum tricornutum, arsenic showed the highest toxicity to the algae with EC50 of 2.4 mg/L. As compared to other organisms, D. magna was found to have higher sensitivity to all of the tested micropollutants. 

___

Arensberg, P., Hemmingsen, V.H., Nyholm, N. (1995). A Miniscale Algal Toxicity Test. Chemosphere, 30(11), 2103–15. https://doi.org/10.1016/0045-6535(95)00090-U

Bernot, R.J., Brueseke, M.A., Evans-White, M.A., Lamberti, G.A. (2005). Acute and Chronic Toxicity of Imidazolium-Based Ionic Liquids on Daphnia Magna. Environmental Toxicology and Chemistry 24(1), 87. https://doi.org/10.1897/03-635.1

Brown, R.J., Galloway, T.S., Lowe, D., Browne, M.A., Dissanayake, A., Jones, M.B., Depledge, M.H. (2004). Differential Sensitivity of Three Marine Invertebrates to Copper Assessed Using Multiple Biomarkers. Aquatic Toxicology, 66(3), 267–78. https://doi.org/10.1016/j.aquatox.2003.10.001

Company, R., Serafim, A., Bebianno, M.J., Cosson, R., Shillito, B., Fiala-Médioni, A. (2004). Effect of Cadmium, Copper and Mercury on Antioxidant Enzyme Activities and Lipid Peroxidation in the Gills of the Hydrothermal Vent Mussel Bathymodiolus Azoricus. In Marine Environmental Research, 58, 377–81. https://doi.org/10.1016/j.marenvres.2004.03.083

Danovaro, R., Fonda, S., Pusceddu, U.A. (2009). Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PlosOne, 4(9), e7006. https://doi.org/10.1371/journal.pone.0007006

Dierickx, P.J., Vanderwielen, C. (1986). Glutathione-Dependent Toxicity of the Algicide 1-Chloro-2,4-Dinitrobenzene to Daphnia Magna straus. Bulletin of Environmental Contamination and Toxicology, 37(1), 629–32. https://doi.org/10.1007/BF01607814

Dirany, A., Aaron, E., Oturan, S., Sirés, N., Oturan, I., Aaron, J.J. (2011). Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Analytical and Bioanalytical Chemistry, 400(2), 353–360. https://doi.org/10.1007/s00216-010-4441-x

Dhillon, G.S., Kaur S., Pulicharla, A., Brar S.K., Cledón, M., Verma, M., Surampalli, R.Y. (2015). Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health, 12(5), 5657–5684.

Etchepare, R., Van der Hoek, J.P. (2015). Health Risk Assessment of Organic Micropollutants in Greywater for Potable Reuse. Water Research, 72 (April), 186–198.

Falås, P., Wick, A., Sandro, C., Habermacher, J., Ternes, T.A., Joss, A. (2016). Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Research, 95(May), 240–249. https://doi.org/10.1016/j.watres.2016.03.009

Fontagné-Dicharry, S., Durante, Sadasivam, H.A., C.A., Kaushik, J., Geurden, I. (2017). Parental and early-feeding effects of dietary methionine in rainbow trout (Oncorhynchus mykiss). Aquaculture, 469(February), 16–27. https://doi.org/10.1016/j.aquaculture.2016.11.039

Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–56. https://doi.org/10.1016/j.nbt.2014.01.001

Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. in culture of marine invertebrate Animals, 29–60. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-8714-9_3

Harris, C.A., Hamilton, P.B., Runnalls, T.J., Vinciotti, V., Henshaw, A., Hodgson, D., Coe, T.S., Jobling, S., Charles R.T., Sumpter, J.P. (2011). The consequences of feminization in breeding groups of wild fish. Environmental Health Perspectives, 119(3), 306–311. https://doi.org/10.1289/ehp.1002555

Hollender, J., Heinz S., McArdell, C.S. (2007). Polar organic micropollutants in the water cycle. in dangerous pollutants (xenobiotics) in urban water cycle. 103–16. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6795-2_11

Howe, K., Matthew D.C., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111

Lele, Z., Krone, P.H. (1996). The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnology Advances. Elsevier Inc. https://doi.org/10.1016/0734-9750(96)00004-3

Li, Y., Dong, F., Liu, X., Xu, J., Han, Y., Zheng, Y. (2014). Chiral fungicide triadimefon and triadimenol: Stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. Journal of Hazardous Materials, 265, 115–123. https://doi.org/10.1016/j.jhazmat.2013.11.055

Li, X., Zhang, R., Tian, T., Shang, X., Xu D., Yingying H., Matsuura, N. (2021). Screening and ecological risk of 1200 organic micropollutants in Yangtze Estuary water. Water Research, June, 117341. https://doi.org/10.1016/j.watres.2021.117341

Libralato, G., Gentile, E., Ghirardini, A.V. (2016). Wastewater effects on Phaeodactylum tricornutum (Bohlin): Setting up a classification system. Ecological Indicators, 60(July), 31–37. https://doi.org/10.1016/j.ecolind.2015.06.014

Maas-Diepeveen, J.L., Leeuwen, C.J. (1986). Aquatic Toxicity of Aromatic Nitro Compounds and Anilines to Several Freshwater Species. Laboratory for Ecotoxicology, Institute for Inland Water Management and Waste Water Treatment, Report No. 86-42: 10 p.

Margot, J., Luca Rossi, Barry, D.A., Holliger, C. (2015). A review of the fate of micropollutants in wastewater treatment plants. WIREs Water, 2 (5), 457–487. https://doi.org/10.1002/wat2.1090

Metz, F., Ingold, K. (2014). Sustainable wastewater management: Is it possible to regulate micropollution in the future by learning from the past? A policy analysis. Sustainability, 6(4), 1992-2012. https://doi.org/10.3390/su6041992

Moermond, C.T.A., Heugens, E.H.W. (2009). Environmental risk limits for trichlorophenols. Report 601714005/2009.

Morlon, H., Claude, F., Magali, F., Christelle, A., Jacqueline, G.L., Alain, B. (2005). Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level. Aquatic Toxicology, 73(1), 65–78. https://doi.org/10.1016/j.aquatox.2005.02.007

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 5359596, Arsenic. Retrieved June 17, 2021 from ttps://pubchem.ncbi.nlm.nih.gov/compound

Paoletti, F., Sirini, P., Seifert, H., Vehlow, J. (2001). Fate of antimony in municipal solid waste incineration. Chemosphere, 42(5-7), 533–543. https://doi.org/10.1016/S0045-6535(00)00225-3

Poirier, I., Marie, P., Lauriane, K., Philippe, H., Arnaud, D., Arash, J., Johana, C., Christelle, C., Gallon, R.K., Bertrand, M. (2018). Toxicological effects of cd se nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach. Ecotoxicology and Environmental Safety, 152, 78–90. https://doi.org/10.1016/j.ecoenv.2018.01.043

Qian, L., Feng, C., Yang, Y., Yuan, L., Suzhen, Q., Wang, C. (2018). Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Science of the Total Environment, 634, 478–487. https://doi.org/10.1016/j.scitotenv.2018.04.012

Rogowska, J., Monika, C., Wojciech, R., Lidia, W. (2020). Micropollutants in Treated Wastewater. Ambio. Springer. https://doi.org/10.1007/s13280-019-01219-5

Santos, J.E.L., Gómez, M.A., Moura, D.C. de, Cerro-López, M., Quiroz, M.A., Martínez-Huitle, C.A. (2021). Removal of herbicide 1-chloro-2,4-dinitrobenzene (DNCB) from aqueous solutions by electrochemical oxidation using boron-doped diamond (BDD) and PbO2 electrodes. Journal of Hazardous Materials, 402, 123850. https://doi.org/10.1016/j.jhazmat.2020.123850

Satoh, A., Vudikaria, L.Q., Kurano, K., Miyachi, S. (2005). Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 31(5), 713–722. https://doi.org/10.1016/j.envint.2005.01.001

Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, A.J., Gunten, U.V., Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072-1077. https://doi.org/10.1126/science.1127291

SCCS (Scientific Committee on Consumer Safety) (2010). Opinion on Triclosan (Antimicrobial Resistance) Scientific Committee on Consumer Safety; Luxembourg: 2010. https://ec.europa.eu/health/scientific_committees/opinions_layman/triclosan/en/about-triclosan.htm#29 (accessed:12.12.2021)

Shao, Y., Chen, Z., Hollert, H., Zhou, S., Deutschmann, B., Seiler, T.B. (2019). Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment. Science of the Total Environment, 666(May), 1273–1282. https://doi.org/10.1016/j.scitotenv.2019.02.047

Singh, A.K., Sharma, L., Mallick, N. (2004). Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, chlorella. Ecotoxicology and Environmental Safety, 59(2), 223–227. https://doi.org/10.1016/j.ecoenv.2003.10.009

Sun, H.Q., Du, Y., Zhang, Z.Y., Jiang, W.J., Guo, Y.M., Lu, X.W., Zhang, Y.M., Sun, L.W. (2016). Acute toxicity and ecological risk assessment of benzophenone and N,N-Diethyl-3 Methylbenzamide in personal care products. International Journal of Environmental Research and Public Health, 13(9), 925. https://doi.org/10.3390/ijerph13090925

Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K., Arizono, K. (2004). Effects of triclosan on various aquatic organisms. Environmental Sciences: An International Journal of Environmental Physiology and Toxicology, 11(2), 133–140.

Tato, T., Beiras, R. (2019). The use of the marine microalga Tisochrysis lutea (T-Iso) in standard toxicity tests; comparative sensitivity with other test species. Frontiers in Marine Science, 6 (August). https://doi.org/10.3389/fmars.2019.00488

TUBITAK (2017). Project on Determination of Hazardous Substances in Coastal and Transitional Waters and Ecological Coast Dynamics. Proje No:5128702.

Venkataraman, B.V., Sudha, S. (2005). Vanadium Toxicity. Asian Journal of Experimental Sciences, 19(2), 127-134.

Villette, C., Maurer, L., Delecolle, J., Zumsteg, J., Erhardt, J., Heintz, D. (2019). In situ localization of micropollutants and associated stress response in populus Nigra leaves. Environment International, 126(May), 523–532. https://doi.org/10.1016/j.envint.2019.02.066

Wang, L., Zheng, B. (2008). Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. Journal of Environmental Sciences, 20(11), 1363–1372. https://doi.org/10.1016/S1001-0742(08)62234-2 Wang, X., Pan, J., Guan, W., Dai, J., Zou, X., Yan, Y., Hu, W. (2011). Selective removal of 3-Chlorophenol from aqueous solution using surface molecularly imprinted microspheres. Journal of Chemical & Engineering Data, 56, 2793–2801. https://doi.org/10.1021/je101275e

Wilhelm, S., Jacob, S., Ziegler, M., Köhler, H.Z., Triebskorn, R. (2018). Influence of different wastewater treatment technologies on genotoxicity and dioxin-like toxicity in effluent-exposed fish. Environmental Sciences Europe, 30(25). https://doi.org/10.1186/s12302-018-0154-0

Yan, Z., Yang, H., Dong, H., Ma, B., Sun, H., Pan, T., Jiang, R., Zhou, R., Shen, J., Liu, J., Lu, G. (2018). Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion. Environmental Pollution, 239, 223–232.

Zhang, Y., Liu, M., Liu, J., Wang, X., Wang, C., Ai, W., Chen, S., Wang, H. (2018). Combined toxicity of triclosan, 2,4-dichlorophenol and 2,4,6-trichlorophenol to zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 57, 9–18.

Zhang, H., West, D., Shi, H., Ma, Y., Adams, C., Eichholz, T. (2019). Simultaneous determination of selected trace contaminants in drinking water using solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry. Water, Air, & Soil Pollution, 230(28). https://doi.org/10.1007/s11270-018-4066-9

Zhou, Y., Zhang, Y., Hu, X. (2020). Synergistic coupling Co3Fe7 alloy and CoFe2O4 spinel for highly efficient removal of 2,4-dichlorophenol by activating peroxymonosulfate. Chemosphere, 242, 125244. https://doi.org/10.1016/j.chemosphere.2019.125244