Removal of high concentration of nitrate and phosphate from aqueous mixotrophic solution by Chlorella vulgaris

Microalgae exhibit large potential as an alternative to advanced biological nutrient removal in wastewater or simulated wastewater at laboratory conditions. Therefore, it is necessary to determine the optimum conditions for nutrient removal. This study investigated the total carbohydrate, chlorophyll-a, -b, carotenoid and lipid production and nutrient removal of mixotrophic microalgae (C. vulgaris) cultured in different nitrate/phosphate rich modified BG-11 medium (0-200 mg L-1 ) at longer growth periods (10 days). The mean removal efficiency of NO3-N (in nitrate source), and PO4-P (in phosphate source) (88.29 ±0.12 and 31.06 ±0.22%, respectively) was reached in the mixotrophic culture. Under the optimum conditions (200 µmol photon m⁻2 s⁻1 16 h photoperiod and 28% inoculum size), 63.61-99.05% of NO3 - and 13.97-63.77% of PO₄3 ⁻were successfully removed. The lipid and carbohydrate productivities were 27.95 and 29.53 g L−1 d−1 , 0.2869 and 0.2435 g L-1 d-1 respectively, which were approximately 9-12 times higher than those in photoautotrophic condition. The BG-11 growth media containing 10 g L−1 glucose and excessive amount of nutrient effect results indicate that the Chl-a, -b and carotenoid contents of C. vulgaris is higher at 100 mg L-1 N and 50 mg L-1 P growth media composition compared to 100% growth media composition. Thereby, the findings of this study provided an insight into the role of algal uptake of nutrients under the nutrient rich mixotrophic medium for the future algae-based treatment application.

___

Abe, K., Takahashi, E., Hirano, M. (2008). Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerial microalga Trentepohlia aurea (Chlorophyta). Journal of Applied Phycology, 20, 283-288. https://doi.org/10.1007/s10811-007-9245-9

Andrade, M.R., Costa, J.A.V. (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264(1-4), 130-134. https://doi.org/10.1016/j.aquaculture.2006.11.021

Eaton, A.D. (2005). Standard Methods for the Examination of Water and Wastewater. 21st edition. Washington, DC: American Public Health Association. APHA, AWWA, WEF. ISBN: 0875530478

Azianabiha, A.H.K., Zahira, Y., Siti, R.S.A., Mohd, S.T. (2019). Assessing the feasibility of microalgae cultivation in agricultural wastewater: The nutrient characteristics. Environmental Technology and Innovation, 15, 1-10. https://doi.org/10.1016/j.eti.2019.100402

Babaei1, A.A., Azadi, R., Jaafarzadeh, N., Alavi, N. (2013). Application and kinetic evaluation of upflow anaerobic biofilm reactor for nitrogen removal from wastewater by Anammox process. Iranian Journal of Environmental Health Science, 10(1), 20-36. https://doi.org/10.1186/1735-2746-10-20

Barbera, E., Sforza, E., Kumar, S., Morosinotto, T., Bertucco, A. (2016). Cultivation of Scenedesmus obliquusin liquid hydrolysate from flash hydrolysis for nutrient recycling. Bioresource Technology, 207, 59-66. https://doi.org/10.1016/j.biortech.2016.01.103

Bhatnagara, A., Kumara, E., Sillanpää, M. (2011). Fluoride removal from water by adsorption-A review. Chemical Engineering Journal, 171(3), 811-840. https://doi.org/10.1016/j.cej.2011.05.028

Biller, P., Ross, A.B., Skill, S.C., Lea-Langton, A., Balasundaram, B., Hall, C., Riley, R., Llewellyn, C.A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70-76. https://doi.org/10.1016/j.algal.2012.02.002

Bruce, E.R. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2), 203-212. https://doi.org/10.1002/bit.21875

Cheirsilp, B., Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fedbatch cultivation. Bioresource Technology, 110, 510-516. https://doi.org/10.1016/j.biortech.2012.01.125

Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126-131. https://doi.org/10.1016/j.tibtech.2007.12.002

Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., Borghi M.D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006

Dere, S., Günes, T., Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13-17.

Garcia Alba, L., Torri, C., Fabbri, D., Kersten, S.R.A. & Brilman, D.W.F. (2013). Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chemical Engineering Journal, 228, 214-223. https://doi.org/10.1016/j.cej.2013.04.097

Groom, M.J., Gray, E.M., Townsend, P.A. (2008). Biofuels and biodiversity: principles for creating better policies for biofuel production. Conservation Biology, 22(3), 602-609. https://doi.org/10.1111/j.1523-1739.2007.00879.x

Heilmann, S.M., Jader, L.R., Harned, L.A., Sadowsky, M.J., Schendel, F.J., Lefebvre, P.A., von Keitz, M.G., Valentas, K.J. (2011). Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Application Energy, 88(10), 3286-3290. https://doi.org/10.1016/j.apenergy.2010.12.041

Khan, M., Yoshida, N. (2008). Effect of l-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Bioresource Technology, 99, 575-582. https://doi.org/10.1016/j.biortech.2006.12.031

Kobayashi, M., Kakizono, T., Nishio, N., Nagai, S. (1992). Effects of light intensity, light quality and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 74(1), 61-63. https://doi.org/10.1016/0922-338X(92)90271-U

Kong, W.B., Yang, H., Cao, Y.T., Song, H., Hua, S.F., Xia, C.G. (2013). Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technology and Biotechnology, 51(1), 62-69.

Lalucat, J., Imperial, J., Pares, R. (1984). Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79. Biotechnology and Bioengineering, 26(7), 677-681. https://doi.org/10.1002/bit.260260707

Lee, Y.K., Ding, S.Y., Hoe, C.H., Low, C.S. (1996). Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. Journal of Applied Phycology, 8(2), 163- 169. https://doi.org/10.1007/BF02186320

Levine, R.B., Sambolin Sierra, C.O., Hockstad, R., Obeid, W., Hatcher, P.G., Savage, P.E. (2013). The use of hydrothermal carbonization to recycle nutrients in algal biofuel production. Environmental Progress and Sustainable Energy, 32(4), 962-975. https://doi.org/10.1002/ep.11812

Liang, Y., Sarkany, N., Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(2), 1043-1049. https://doi.org/10.1007/s10529-009-9975-7

Liu, J., Huanga, J., Sun, Z., Zhong, Y., Jiang, Y., Chen, F. (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology, 102(1), 106-110. https://doi.org/10.1016/j.biortech.2010.06.017

Li, X., Hu, H., Gan, K., Sun, Y. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016

López Barreiro, D., Prins, W., Ronsse, F., Brilman, W. (2013). Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy, 53(2013), 113-127. https://doi.org/10.1016/j.biombioe.2012.12.029

Marquez, J., Sasaki, K., Kakizono, T., Nishio, N., Nagai, S. (1993). Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic condtions. Journal of Fermentation and Bioengineering, 76(5), 408-410. https://doi.org/10.1016/0922-338X(93)90034-6

Mishra, S.K., Suh, W.I., Farooq, W., Moon, M., Shrivastav, A., Park, M.S., Yang, J.W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155(2014), 330-333. https://doi.org/10.1016/j.biortech.2013.12.077

Mitra, D., Lamsal, B.P. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial coproducts. Algal Research, 1(1), 40-48. https://doi.org/10.1016/j.algal.2012.03.002

Orús, M.L., Marco, E., Martínez, F. (1991). Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresource Technology, 38(1991), 179-184. https://doi.org/10.1016/0960-8524(91)90151-9

Perez-Garcia, O., Bashan, Y., Esther Puente, M. (2011). Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. Journal of Phycology, 47(1), 190-199. https://doi.org/10.1111/j.1529-8817.2010.00934.x

Rösch, C., Skarka, J., Wegerer, N. (2012). Materials flow modeling of nutrient recycling in biodiesel production from microalgae. Bioresource Technology, 107(2012), 191-199. https://doi.org/10.1016/j.biortech.2011.12.016

Shi, X.M., Zhang, X.W., Chen, F. (2000). Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 27(3-5), 312-318. https://doi.org/10.1016/S0141-0229(00)00208-8

Sialve, B., Bernet, N., Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnological Advances, 27(4), 409-416. https://doi.org/10.1016/j.biotechadv.2009.03.001

Skoog, D., Holler, F., Nieman, T., Kılıç, E., Köseoğlu, F. (2000). Enstrümantal Analiz ilkeleri. Ankara, Turkey, Bilim Press., 1038 pp. ISBN 9789755560731

Swati, Y.K., Gayatri, G., Sanjay, N., Kiran, P., Bhaskar, K., Sanjay, K. (2017). Exploiting phosphate-starved cells of Scenedesmus sp. for the treatment of raw sewage. Indian Journal of Microbiology, 57(2), 241-249. https://doi.org/10.1007/s12088-016-0626-0

Tao, Y.F., Qiang, J., Yin, G.J., Xu, P., Shi, Q., Bao, J.W. (2017). Identification and characterization of lipid metabolism-related microRNAs in the liver of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) by deep sequencing. Fish Shellfish Immunologi. 69(2), 227-235. https://doi.org/10.1016/j.fsi.2017.08.023

Wan, M.X., Wang, R.M., Xia, J.L., Rosenberg, J.N., Nie, Z.Y., Kobayashi, N. (2012). Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnology and Bioengineering, 109(8), 1958-1964. https://doi.org/10.1002/bit.24477

Ward, A.J., Lewis, D.M., Green, F.B. (2014). Anaerobic digestion of algae biomass: a review. Algal Research, 5, 204-214. https://doi.org/10.1016/j.algal.2014.02.001

Woertz, I.C., Lundquist, T.J., Feffer, A.S., Nelson, Y.M. (2009). Lipid productivity of algae grown during treatment of dairy and municipal wastewaters. Journal of Environmental Engineering, 135(11), 1115-1122. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000129

Zhang, H., Wang, W., Li, Y., Yang, W., Shen, G. (2011). Mixotrophic cultivation of Botryococcus braunii. Biomass and Bioenergy, 35(5), 1710-1715. https://doi.org/10.1016/j.biombioe.2011.01.002

Zhang, Y., Kendall, A., Yuan, J. (2014). A comparison of on-site nutrient and energy recycling technologies in algal oil production. Resources, Conservation and Recycling, 88, 13-20. https://doi.org/10.1016/j.resconrec.2014.04.011