Assessment of microbial community diversity in lakes of İğneada floodplain forest by metabarcoding approach

This paper aims to contribute to the understanding of bacterial community patterns of the lakes of İğneada Floodplain Forest by metabarcoding approach. Within this scope, surface water samples were collected from three lakes located in the area namely Mert Lake, Hamam Lake, and Saka Lake, and the bacterial diversity was assessed by a high throughput sequencing of the 16S rRNA gene. Chao1 richness and Shannon diversity were higher in Saka Lake indicated a more diverse bacterial community. Proteobacteria was by far the most abundant phyla in all lakes. Although Bacteroidetes and Actinobacteria also dominated the community, their abundances differed in each lake. While the family Burkholderiaceae represented 25% of the bacterial community in Saka Lake, the abundances were 9% and 4% in Hamam Lake and Mert Lake, respectively. This study is one of the first investigations specifically focused on the bacterial communities in three lakes of İğneada Floodplain by next-generation sequencing platform and gave a prescreening of the bacterial diversity. Further studies are required to determine the biotechnological potential of this unique habitat.

___

Altinsaçli, S. (2001). The Ostracoda (Crustacea) fauna of lakes Erikli, Hamam, Mert, Pedina and Saka (Iǧneada, Kirklareli, Turkey). Turkish Journal of Zoology, 25(4), 343-355.

Amir, A., Daniel, M., Navas-Molina, J., Kopylova, E., Morton, J., Xu, Z.Z., Eric, K., Thompson, L., Hyde, E., Gonzalez, A., Knight, R. (2017). Deblur Rapidly Resolves Single-. American Society for Microbiology, 2(2), 1-7. https://doi.org/10.1128/mSystems.00191-16

Arekhi, M., Goksel, C., Sanli, F.B., Senel, G. (2019). Comparative evaluation of the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for Igneada longos forest. ISPRS International Journal of Geo-Information, 8(2), 56. https://doi.org/10.3390/ijgi8020056

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K. Bin, Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A. V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9

Coenye, T. (2014). The Family Burkholderiaceae. In The Prokaryotes (pp. 759–776). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_239

Comeau, A.M., Douglas, G.M., & Langille, M.G.I. (2017). Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research. MSystems, 2(1), 1-11. https://doi.org/10.1128/mSystems.00127-16

Diao, M., Sinnige, R., Kalbitz, K., Huisman, J., Muyzer, G. (2017). Succession of bacterial communities in a seasonally stratified lake with an anoxic and sulfidic hypolimnion. Frontiers in Microbiology, 8(DEC), 1–15. https://doi.org/10.3389/fmicb.2017.02511

Evtushenko, L.I., Takeuchi, M. (2006). The Family Microbacteriaceae. In The Prokaryotes (pp. 1020–1098). New York, NY: Springer New York. https://doi.org/10.1007/0-387-30743-5_43

Filippidou, S., Wunderlin, T., Junier, T., Jeanneret, N., Dorador, C., Molina, V., Johnson, D.R., Junier, P. (2016). A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes. 7, 1-11. https://doi.org/10.3389/fmicb.2016.01707

Güher, H. (1999). Mert, erikli, hamam, pedina gölleri’nin (i̇ǧneada/kirklareli) cladocera ve copepoda (crustacea) türleri üzerinde taksonomik bir çalişma. Turkish Journal of Zoology, 23(SUPPL. 1), 47-53.

Güher, H. (2003). Mert, Erikli, Hamam ve Pedina (İğ neada,Kırklareli) Göller’ inin Zooplanktonik Organizma-ların Kommunite Yap ı s ı. 20, 51-62.

Kambura, A.K., Mwirichia, R.K., Kasili, R.W., Karanja, E.N., Makonde, H.M., Boga, H.I. (2016). Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. BMC Microbiology, 16(1), 1-12. https://doi.org/10.1186/s12866-016-0748-x

Kiersztyn, B., Chróst, R., Kaliński, T., Siuda, W., Bukowska, A., Kowalczyk, G., Grabowska, K. (2019). Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Scientific Reports, 9(1), 11144. https://doi.org/10.1038/s41598-019-47577-8

Llorens-Marès, T., Catalan, J., Casamayor, E.O. (2020). Taxonomy and functional interactions in upper and bottom waters of an oligotrophic high-mountain deep lake (Redon, Pyrenees) unveiled by microbial metagenomics. Science of the Total Environment, 707, 135929. https://doi.org/10.1016/j.scitotenv.2019.135929

Lloyd, K.G., Ladau, J., Steen, A.D., Yin, J., Crosby, L. (2018). Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. BioRxiv, 3(5), 1-12. https://doi.org/10.1101/303602

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200

Michán, C., Blasco, J., Alhama, J. (2021). High‐throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microbial Biotechnology, 1751-7915.13763. https://doi.org/10.1111/1751-7915.13763

Nakatsu, C.H., Byappanahalli, M.N., Nevers, M.B. (2019). Bacterial Community 16S rRNA Gene Sequencing Characterizes Riverine Microbial Impact on Lake Michigan. 10, 1-12. https://doi.org/10.3389/fmicb.2019.00996

Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., Bertilsson, S. (2011). A Guide to the Natural History of Freshwater Lake Bacteria. In Microbiology and Molecular Biology Reviews, 75, 14-49. https://doi.org/10.1128/MMBR.00028-10

Ondov, B.D., Bergman, N.H., Phillippy, A.M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12(1), 385. https://doi.org/10.1186/1471-2105-12-385

Ozbayram, E.G., Koker, L., Akçaalan, R., Aydın, F., Ertürk, A., Ince, O., Albay, M. (2021). Contrasting the Water Quality and Bacterial Community Patterns in Shallow and Deep Lakes: Manyas vs. Iznik. Environmental Management, 67, 506-512. https://doi.org/10.1007/s00267-020-01357-7

Ozbayram, E.G., Koker, L., Akcaalan, R., Ince, O., Albay, M. (2020). Bacterial Community Composition of Sapanca Lake During a Cyanobacterial Bloom. Aquatic Sciences and Engineering, 35(2), 52-56. https://doi.org/10.26650/ASE2020652073

Riesenfeld, C.S., Schloss, P.D., Handelsman, J. (2004). Metagenomics: Genomic analysis of microbial communities. Annual Review of Genetics, 38, 525-552. https://doi.org/10.1146/annurev.genet.38.072902.091216

Sorokin, D.Y., van Pelt, S., Tourova, T.P., Evtushenko, L I. (2009). Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 59, 248-253. https://doi.org/10.1002/9781118960608.fbm00051

Steen, A.D., Crits-Christoph, A., Carini, P., DeAngelis, K.M., Fierer, N., Lloyd, K.G., Cameron Thrash, J. (2019). High proportions of bacteria and archaea across most biomes remain uncultured. ISME Journal, 13(12), 3126-3130. https://doi.org/10.1038/s41396-019-0484-y

Tecimen, H.B., Kavgaci, A. (2010). Comparison of soil and forest floor properties of floodplain and surrounding forests in Igneada, Turkey. Journal of Environmental Biology, 31(1-2), 129-134.

Ung, P., Peng, C., Yuk, S., Tan, R., Ann, V., Miyanaga, K., Tanji, Y. (2019). Dynamics of bacterial community in Tonle Sap Lake, a large tropical flood-pulse system in Southeast Asia. Science of the Total Environment, 664, 414-423. https://doi.org/10.1016/j.scitotenv.2019.01.351

Yong, J.J.J.Y., Chew, K.W., Khoo, K.S., Show, P.L., Chang, J.S. (2021). Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnology Advances, 47, 107684. https://doi.org/10.1016/j.biotechadv.2020.107684

Zhang, L., Fang, W., Li, X., Gao, G., Jiang, J. (2020). Linking bacterial community shifts with changes in the dissolved organic matter pool in a eutrophic lake. Science of the Total Environment, 719, 137387. https://doi.org/10.1016/j.scitotenv.2020.137387

Zwirglmaier, K., Keiz, K., Engel, M., Geist, J., & Raeder, U. (2015). Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Frontiers in Microbiology, 6, 1-18. https://doi.org/10.3389/fmicb.2015.01168

URL 1. http://igneada.tabiat.gov.tr/ accessed 27/02/2021