Potential Application of PCR Based Molecular Methods in Fish Pathogen Identification: A Review

Potential Application of PCR Based Molecular Methods in Fish Pathogen Identification: A Review

Molecular biology developments have led to fast growth in new methods for fish disease diagnosis. Molecular diagnostic methods are rapid and more specific, more sensitive than the culture of pathogens, serology, histology, and biochemical methods which are traditionally utilized to identify causative agents of fish disease. Molecular diagnostic methods are valuable for detecting specific pathogen that are difficult to culture in vitro or require a long cultivation period and it significantly more rapid in providing results compared to culture. It enables earlier informed decision-making and rapid diagnosis of bacteremia, particularly for low levels of bacteria in specimens. Molecular techniques which have the major significance are mainly PCR-based molecular diagnostic methods including Polymerase Chain Reaction (PCR), Real-Time Polymerase Chain Reaction (RT-PCR), Multiplex Polymerase Chain Reaction (multiplex- PCR), and Random Amplified Polymorphic DNA (RAPD), etc. These have been increasingly utilized to diagnose fish disease for the last recent years. Molecular diagnostic methods can detect pathogens from asymptomatic fish, so disease outbreaks could be prevented. As a consequence, antibiotic treatment can be reduced and the development of antibiotic-resistant bacteria can be eliminated. In this review paper, we attempt to summarize the potentiality of PCR-based molecular diagnostic methods and their application in fish pathogen identification

___

  • Abadi, A.T.B., Rizvanov, A.A., Haertlé, T., & Blatt, N.L. (2019). World Health Organization report: Current crisis of antibiotic resistance. BioNanoScience, 9(4), 778–788.
  • Abdisa, T., & Abdisa*, T. (2017). Review on Practical Guidance of Veterinary Clinical Diagnostic Approach. International Journal of Veterinary Science and Research, 3(1), 030– 049. https://doi.org/10.17352/ijvsr.000020
  • Adams, A., & Thompson, K.D. (2011). Development of diagnostics for aquaculture: Challenges and opportunities. Aquaculture Research, 42, 93–102.
  • Adhikari, H., Ali, M.Y., Shahiduzzaman, M., Shams, F.I., & Sarower, M.G. (2015). Biochemical and PCR assay for detection of pathogenic bacteria at shrimp and shrimp arms in Bangladesh. Fisheries and Aquaculture Journal, 6(2), 1.
  • Adzitey, F., Huda, N., & Ali, G.R.R. (2013). Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech, 3(2), 97–107. https://doi.org/10.1007/s13205-012-0074-4
  • Aggarwal, R., Ringold, S., Khanna, D., Neogi, T., Johnson, S.R., Miller, A., Brunner, H.I., Ogawa, R., Felson, D., Ogdie, A., Aletaha, D., & Feldman, B.M. (2015). Distinctions Between Diagnostic and Classification Criteria? Arthritis Care & Research, 67(7), 891–897. https://doi.org/10.1002/acr.22583
  • Ahmed, N. (2013). Linking prawn and shrimp farming towards a green economy in Bangladesh: Confronting climate change. Ocean & Coastal Management, 75, 33–42.
  • Ahrberg, C.D., Ilic, B.R., Manz, A., & Neužil, P. (2016). Handheld real-time PCR device. Lab on a Chip, 16(3), 586–592.
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). DNA Replication Mechanisms. Molecular Biology of the Cell. 4th Edition. https://www.ncbi.nlm.nih.gov/books/NBK26850/
  • Alliance, G., & District of Columbia Department of Health. (2010). Diagnosis of a Genetic Disease. In Understanding Genetics: A District of Columbia Guide for Patients and Health Professionals. Genetic Alliance. https://www.ncbi.nlm.nih.gov/books/NBK132142/
  • Alonso, M., Lago, F.C., Gómez-Reino, M., Fernández Casal, J., Martín Varela, I., Vieites, J.M., & Espiñeira, M. (2015). Non-invasive fast real-time PCR assay for detection of the enteric parasite E nteromyxum scophthalmi in cultured turbot (S cophthalmus maximus L.). Aquaculture Research, 46(9), 2104–2115.
  • Altinok, İ., & Kurt, İ. (2003). Molecular diagnosis of fish diseases: A review. Turkish Journal of Fisheries and Aquatic Sciences, 3(2), 131–138.
  • Altinok, I., Capkin, E., & Kayis, S. (2008). Development of multiplex PCR assay for simultaneous detection of five bacterial fish pathogens. Veterinary Microbiology, 131(3–4), 332–338.
  • Altinok, I., Grizzle, J.M., & Liu, Z. (2001). Detection of Yersinia ruckeri in rainbow trout blood by use of the polymerase chain reaction. Diseases of Aquatic Organisms, 44(1), 29–34.
  • Aly, S.M. (2013). A review of fish diseases in the Egyptian aquaculture sector: Working report.
  • Amjad, M. (2020). An overview of the molecular methods in the diagnosis of gastrointestinal infectious diseases. International Journal of Microbiology, 2020.
  • Andree KB, MacConnell E, Hedrick RP (1998) A nested polymerase chain reaction for the detection of genomic DNA of Myxobolus cerebralis in rain- bow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms 34, 145-154
  • Andree, K.B., Gresoviac, S.J., & HEDRICK, R.P. (1997). Small subunit ribosomal RNA sequences unite alternate actinosporean and myxosporean stages of Myxobolus cerebralis the causative agent of whirling disease in salmonid fish. Journal of Eukaryotic Microbiology, 44(3), 208–215.
  • Arias, C.R., Garay, E., Aznar, R. (1995) Nested PCR method for rapid and sensitive detection of Vibrio vulnificus in fish, sediments, and water. Applied and Environmental Microbiology. 61, 3476-3478.
  • Arora, D.K., Das, S., & Sukumar, M. (2013). Analyzing microbes: Manual of molecular biology techniques/Dilip Kumar Arora, Surajit Das, Mesapogu Sukumar, editors. Heidelberg; New York: Springer.
  • Asencios, Y.O., Sánchez, F.B., Mendizábal, H.B., Pusari, K.H., Alfonso, H.O., Sayán, A.M., Figueiredo, M.A.P., Manrique, W.G., de Andrade Belo, M.A., & Chaupe, N.S. (2016). First report of Streptococcus agalactiae isolated from Oreochromis niloticus in Piura, Peru: Molecular identification and histopathological lesions. Aquaculture Reports, 4, 74–79.
  • Assefa, A., & Abunna, F. (2018). Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary Medicine International, 2018.
  • Austin, B. (2019). Methods for the diagnosis of bacterial fish diseases. Marine Life Science & Technology, 1(1), 41–49.
  • Avendaño-Herrera, R., Magariños, B., Toranzo, A.E., Beaz, R., Romalde, J.L. (2004) Species-specific polymerase chain reaction primer sets for the diag-nosis of Tenacibaculum maritimum infection. Diseases of Aquatic Organisms 62, 75-83
  • Avendaño-Herrera, R., Rodríguez, J., Magariños, B., Romalde, J.L., & Toranzo, A.E. (2004). Intraspecific diversity of the marine fish pathogen Tenacibaculum maritimum as determined by randomly amplified polymorphic DNA- PCR. Journal of Applied Microbiology, 96(4), 871–877.
  • Babady, N.E., Lee, Y.J., Papanicolaou, G., & Tang, Y.-W. (2019). Impacts and Challenges of Advanced Diagnostic Assays for Transplant Infectious Diseases. In Principles and Practice of Transplant Infectious Diseases (pp. 795–818). Springer.
  • Bader JA, Shoemaker CA, Klesius PH (2003) Rapid detection of columnaris disease in channel catfish (Ictalurus punctatus) with a new species-specific 16-S rRNA gene- based PCR primer for Flavobacterium columnare. Journal of Microbiological Methods 52, 209-220
  • Baillie, B.K., Andreakis, N., Cano-Gomez, A., Hoj, L., & Owens, L. (2015). A multiplex PCR-based protocol for identification and quantification of Vibrio harveyi- related species. Null.
  • Bajinka, O. (2017). Conventional Microbiological Approaches in Identification of Pathogenic Bacteria and Protozoons Isolated from the Drinking Water of Gambian Province. SF J Appl Microbiol, 1(1).
  • Baliarda, A., Faure, D., & Urdaci, M.C. (2002) Development and application of a nested PCR to monitor brood stock salmonid ovarian fluid and spleen for detection of the fish pathogen Flavobacterium psychrophilum. Journal of Applied Microbiology. 92, 510-516.
  • Balogh, E.P., Miller, B.T., Ball, J.R., Care, C. on D.E. in H., Services, B. on H.C., Medicine, I. of, & The National Academies of Sciences, E. (2015). The Diagnostic Process. In Improving Diagnosis in Health Care. National Academies Press (US).
  • https://www.ncbi.nlm.nih.gov/books/NBK338593/ Barta, J.R., Martin, D.S., Liberator, P.A., Dashkevicz, M., Anderson, J.W., Feighner, S.D., Elbrecht, A., Perkins- Barrow, A., Jenkins, M.C., & Danforth, H.D. (1997).
  • Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. The Journal of Parasitology, 262–271.
  • Bartlett, J.M., & Stirling, D. (2003a). A short history of the polymerase chain reaction. In PCR protocols (pp. 3–6). Springe
  • Bartlett, J.M., & Stirling, D. (2003b). PCR protocols (Vol. 226). Springer.
  • Basu, C. (2015). PCR primer design. Springer.
  • Baynes, J., & Dominiczak, M.H. (2009). Medical biochemistry. Elsevier Health Sciences.
  • Bazaldua, O.V., & Schneider, F.D. (1999). Evaluation and Management of Dyspepsia. American Family Physician, 60(6), 1773.
  • Beauchamp, K.A., Kathman, R.D., McDowell, T.S., & Hedrick, R.P. (2001). Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Molecular Phylogenetics and Evolution, 19(2), 216–224.
  • Bell AS, Yokoyama H, Aoki T, Takahashi M, Maruyama K (1999) Single and nested polymerase chain reaction assays for the detection of Microspori- dium seriolae (Microspora), the causative agent of ‘Beko’ disease in yellow- tail Seriola quinqueradiata. Diseases of Aquatic Organisms 37, 127-134
  • Bigarré, L., Lesne, M., Lautraite, A., Chesneau, V., Leroux, A., Jamin, M., Boitard, P.M., Toffan, A., Prearo, M., & Labrut, S. (2017). Molecular identification of iridoviruses infecting various sturgeon species in Europe. Journal of Fish Diseases, 40(1), 105–118.
  • Blanco, M.M., Gibello, A., & Fernández-Garayzábal, J.F. (2000). Influence of fish health management: Bases, procedures and economic implications. Cahiers Options Méditerranéennes, 51, 45–49.
  • Bondad-Reantaso, M.G., Subasinghe, R.P., Arthur, J.R., Ogawa, K., Chinabut, S., Adlard, R., Tan, Z., & Shariff, M. (2005). Disease and health management in Asian aquaculture. Veterinary Parasitology, 132(3–4), 249–272.
  • Borah, P. (2011). Primer designing for PCR. Science Vision, 11(3), 134–136.
  • Brown, L.L., Iwama, G.K., Evelyn, T.P.T., Nelson, W.S., & Levine, R.P. (1994). Use of the polymerase chain reaction (PCR) to detect DNA from Renibacterium salmoninarum within individual salmonid eggs. Diseases of Aquatic Organisms, 18(3), 165–171.
  • Butler, J.M. (2012). Chapter 16—Non-human DNA. In J.M. Butler (Ed.), Advanced Topics in Forensic DNA Typing: Methodology (pp. 473–495). Academic Press. https://doi.org/10.1016/B978-0-12-374513-2.00016-6
  • Byers, H.K., Gudkovs, N., & Crane, M.S.J. (2002). PCR-based assays for the fish pathogen Aeromonas salmonicida. I. Evaluation of three PCR primer sets for detection and identification. Diseases of Aquatic Organisms, 49(2), 129–138.
  • Cabello, F.C. (2006). Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7), 1137–1144.
  • Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A.H. (2013). Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917–1942.
  • Caetano-Anollés, D. (2013). Polymerase chain reaction. Cai, H.Y., Caswell, J.L., & Prescott, J.F. (2014). Nonculture molecular techniques for diagnosis of bacterial disease in animals: A diagnostic laboratory perspective. Veterinary Pathology, 51(2), 341–350.
  • Caliskan, M. (2012). Genetic diversity in microorganisms. BoD– Books on Demand.
  • Carol, G.R., Jeyasanta, K.I., Mani, A.E., & Patterson, J. (2013). Prevalence of Pseudomonas sp. in Fin Fishes and their Antibiotic Susceptibility. Journal of Pure and Applied Microbiology, 7(1), 677–681.
  • Carr, J., Williams, D.G., & Hayden, R.T. (2010). Molecular detection of multiple respiratory viruses. In Molecular diagnostics (pp. 289-300). Academic Press.
  • Cepeda C, García-Márquez S, Santos Y (2003) Detection of Flexibacter ma- ritimus in fish tissue using nested PCR amplification. Journal of Fish Dis- eases 26, 65-70
  • Chamberlain, J.S., Gibbs, R.A., Rainer, J.E., Nguyen, P.N., & Thomas, C. (1988). Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research, 16(23), 11141– 11156.
  • Chang, C.-I., Wu, C.-C., Cheng, T.C., Tsai, J.-M., & Lin, K.-J. (2009). Multiplex nested-polymerase chain reaction for the simultaneous detection of Aeromonas hydrophila, Edwardsiella tarda, Photobacterium damselae and Streptococcus iniae, four important fish pathogens in subtropical Asia. Aquaculture Research, 40(10), 1182– 1190.
  • Chapela, M.-J., Ferreira, M., Varela, C., Arregui, L., & Garrido- Maestu, A. (2018). Development of a multiplex real-time PCR method for early diagnosis of three bacterial diseases in fish: A real-case study in trout aquaculture. Aquaculture, 496, 255–261.
  • Charoonnart, P., Purton, S., & Saksmerprome, V. (2018). Applications of microalgal biotechnology for disease control in aquaculture. Biology, 7(2), 24.
  • Chase, D.M., & Pascho, R.J. (1998) Development of a nested polymerase chain reaction for amplification of a sequence of the p57 gene of Renibacterium salmoninarum that provides a highly sensitive method for detection of the bacterium in salmonid kidney. Diseases of Aquatic Organisms. 34, 223-229.
  • Chen, R., Lu, X., Li, M., Chen, G., Deng, Y., Du, F., Dong, J., Huang, X., Cui, X., & Tang, Z. (2019). Polymerase Chain Reaction using “V” Shape Thermal Cycling Program. Theranostics, 9(6), 1572.
  • Clark, D.P., Pazdernik, N.J., & McGehee, M.R. (2019). Chapter 6—Polymerase Chain Reaction. In D.P. Clark, N.J. Pazdernik, & M.R. McGehee (Eds.), Molecular Biology (Third Edition) (pp. 168–198). Academic Cell. https://doi.org/10.1016/B978-0-12-813288-3.00006-9
  • Cockerill, F.R. (1999). Genetic Methods for Assessing Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy, 43(2), 199–212.
  • Coll, J.M., & Dominguez-Juncal, J. (1995). Applications of monoclonal antibodies in aquaculture. Biotechnology Advances, 13(1), 45–73.
  • Council, N.R. (n.d.). Committee on Diagnosis and Control of Johne’s Disease. 2003. Diagnosis and control of Johne’s disease. National Academies Press, Washington, DC.
  • Cox, M.M., Doudna, J., & O’Donnell, M. (2015). Molecular Biology: Principles and Practice. Macmillan Higher Education.
  • Crump, E.M., Perry, M.B., Clouthier, S.C., & Kay, W.W. (2001). Antigenic characterization of the fish pathogen Flavobacterium psychrophilum. Applied and Environmental Microbiology, 67(2), 750–759.
  • Dalla Valle, L., Zanella, L., Belvedere, P., & Colombo, L. (2002). Use of random amplification to develop a PCR detection method for the causative agent of fish pasteurellosis, Photobacterium damselae subsp. Piscicida Vibrionaceae). Aquaculture, 207(3–4), 187–202.
  • Dangtip, S., Sirikharin, R., Sanguanrut, P., Thitamadee, S., Sritunyalucksana, K., Taengchaiyaphum, S., Mavichak, R., Proespraiwong, P., & Flegel, T.W. (2015). AP4 method for two-tube nested PCR detection of AHPND isolates of Vibrio parahaemolyticus. Aquaculture Reports, 2, 158– 162.
  • Datta, S. (2012). Management of water quality in intensive aquaculture. Respiration, 6, 602.
  • Debnath, M., Prasad, G.B., & Bisen, P.S. (2010). Molecular diagnostics: Promises and possibilities. Springer Science & Business Media.
  • Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current Opinion in Microbiology, 14(3), 251–258.
  • Dey, M.M., Bose, M.L., & Alam, M.F. (2008). Recommendation domains for pond aquaculture: Country case study: development and status of freshwater aquaculture in Bangladesh.
  • Dong, H.T., Siriroob, S., Meemetta, W., Santimanawong, W., Gangnonngiw, W., Pirarat, N., Khunrae, P., Rattanarojpong, T., Vanichviriyakit, R., & Senapin, S. (2017). Emergence of tilapia lake virus in Thailand and an alternative semi-nested RT-PCR for detection. Aquaculture, 476, 111–118.
  • Dorak, M.T. (2007). Real-time PCR. Taylor & Francis.
  • Doyle, M.P., Loneragan, G.H., Scott, H.M., & Singer, R.S. (2013). Antimicrobial resistance: Challenges and perspectives. Comprehensive Reviews in Food Science and Food Safety, 12(2), 234–248.
  • Drijvers, J.M., Awan, I.M., Perugino, C.A., Rosenberg, I.M., & Pillai, S. (2017). The Enzyme-Linked Immunosorbent Assay: The Application of ELISA in Clinical Research. In Basic Science Methods for Clinical Researchers (pp. 119– 133). Elsevier.
  • Drouin, R., Dridi, W., & Samassekou, O. (2007). DNA Polymerases for PCR Applications. In Industrial Enzymes (pp. 379–401). Springer.
  • Dwivedi, S., Purohit, P., Misra, R., Pareek, P., Goel, A., Khattri, S., Pant, K.K., Misra, S., & Sharma, P. (2017). Diseases and Molecular Diagnostics: A Step Closer to Precision
  • Medicine. Indian Journal of Clinical Biochemistry, 32(4), 374–398. https://doi.org/10.1007/s12291-017-0688-8
  • El-Matbouli M, Rucker U, Soliman H (2007) Detection of Cyprinid herpes- virus-3 (CyHV-3) DNA in infected fish tissues by nested polymerase chain reaction. Diseases of Aquatic Organisms 78, 23-28
  • El-Matbouli M, Soliman H (2005a) Development of a rapid assay for the diag- nosis of Myxobolus cerebralis in fish and oligochaetes using loop-mediated isothermal amplification. Journal of Fish Diseases 28, 549-557
  • El-Matbouli, M., Soliman, H. (2005b) Rapid diagnosis of Tetracapsuloides bryo- salmonae, the causative agent of proliferative kidney disease (PKD) in sal- monid fish by a novel DNA amplification method, loop-mediated isothermal amplification (LAMP). Parasitology Research 96, 277-284
  • Elnifro, E.M., Ashshi, A.M., Cooper, R.J., & Klapper, P.E. (2000). Multiplex PCR: Optimization and application in diagnostic virology. Clinical Microbiology Reviews, 13(4), 559–570.
  • Emmadi, R., Boonyaratanakornkit, J.B., Selvarangan, R., Shyamala, V., Zimmer, B.L., Williams, L., Bryant, B., Schutzbank, T., Schoonmaker, M.M., & Wilson, J.A.A. (2011). Molecular methods and platforms for infectious diseases testing: A review of FDA-approved and cleared assays. The Journal of Molecular Diagnostics, 13(6), 583– 604.
  • Eom, K.S., Rim, H.-J., & Jeon, H.-K. (2020). Taenia asiatica: Historical overview of taeniasis and cysticercosis with molecular characterization. In Advances in parasitology (Vol. 108, pp. 133–173). Elsevier.
  • Eszterbauer, E., Sipos, D., Szakály, Á., & Herczeg, D. (2019). Distinctive site preference of the fish parasite Myxobolus cerebralis (Cnidaria, Myxozoa) during host invasion. Acta Veterinaria Hungarica, 67(2), 212–223.
  • Eyngor, M., Zamostiano, R., Tsofack, J.E.K., Berkowitz, A., Bercovier, H., Tinman, S., Lev, M., Hurvitz, A., Galeotti, M., & Bacharach, E. (2014). Identification of a novel RNA virus lethal to tilapia. Journal of Clinical Microbiology, 52(12), 4137–4146.
  • Faisal, M., Samaha, H., & Loch, T.P. (2017). Chapter 9— Planning a Fish-Health Program. In G. Jeney (Ed.), Fish Diseases (pp. 221–248). Academic Press.
  • https://doi.org/10.1016/B978-0-12-804564-0.00009-0 Farahani, A. Safaie; Taghavi, S.M.; Taher-Khani, K., 2015. Comparison of conventional, nested and real-time pcr for detection of the causal agent of ratoon stunt in Iran. Journal of Plant Pathology. 97(2), 259-263.
  • Faruk, M.A.R., Sarker, M.M.R., Alam, M.J., & Kabir, M.B. (2004). Economic loss from fish diseases on rural freshwater aquaculture of Bangladesh. Pakistan Journal of Biological Sciences, 7(12), 2086–2091.
  • Fletcher, S. (2015). Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environmental Health and Preventive Medicine, 20(4), 243–252.
  • Foddai, A.C., & Grant, I.R. (2020). Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Applied Microbiology and Biotechnology, 104(10), 4281–4288.
  • Foroni, L., Reid, A.G., Gerrard, G., Toma, S., & Hing, S. (2017). 8—Molecular and Cytogenetic Analysis. In B.J. Bain, I. Bates, & M.A. Laffan (Eds.), Dacie and Lewis Practical Haematology (Twelfth Edition) (pp. 126–164). Elsevier. https://doi.org/10.1016/B978-0-7020-6696-2.00008-4
  • Francis-Floyd, R. (2011). Mycobacterial infections of fish. Southern Regional Aquaculture Center USA.
  • Francis-Floyd, R., & Wellborn, T.L. (1991). Introduction to fish health management. Florida Cooperative Extension Service, Institute of Food and Agricultural ....
  • Franco-Duarte, R., Černáková, L., Kadam, S., S. Kaushik, K., Salehi, B., Bevilacqua, A., Corbo, M.R., Antolak, H., Dybka-Stępień, K., Leszczewicz, M., Relison Tintino, S., Alexandrino de Souza, V.C., Sharifi-Rad, J., Melo Coutinho, H.D., Martins, N., & Rodrigues, C.F. (2019). Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms, 7(5), 130.
  • https://doi.org/10.3390/microorganisms7050130 Francy, D.S., Bushon, R.N., Brady, A.M., Bertke, E.E., Kephart, C.M., Likirdopulos, C.A., Mailot, B.E., Schaefer, F.W., & Lindquist, Hda. (2009). Performance of traditional and molecular methods for detecting biological agents in drinking water. U.S. Geological Survey.
  • Frans, I., Lievens, B., Heusdens, C., & Willems, K.A. (2008). Detection and identification of fish pathogens: What is the future?
  • Galanis, A., Kourkoutas, Y., Tassou, C.C., & Chorianopoulos, N. (2015). Detection and identification of probiotic Lactobacillus plantarum strains by multiplex PCR using RAPD-derived primers. International Journal of Molecular Sciences, 16(10), 25141–25153.
  • Gao, H., Li, F., Zhang, X., Wang, B., & Xiang, J. (2010). Rapid, sensitive detection of Vibrio anguillarum using loop- mediated isothermal amplification. Chinese Journal of Oceanology and Limnology, 28(1), 62-66.
  • García-Giménez, J.L., Beltrán-García, J., Romá-Mateo, C., Seco- Cervera, M., Pérez-Machado, G., & Mena-Mollá, S. (2019). Chapter 2—Epigenetic biomarkers for disease diagnosis. In S. Sharma (Ed.), Prognostic Epigenetics (Vol. 15, pp. 21–44). Academic Press. https://doi.org/10.1016/B978-0-12-814259-2.00002-9
  • García-González, P., García-Lamas, N., Edfuf, C.F., & Santos, Y. (2011). Development of a PCR method for the specific identification of the marine fish pathogen Tenacibaculum soleae. Aquaculture, 319(1–2), 1–4.
  • Gilligan, P.H. (2013). Identification of pathogens by classical clinical tests. The Prokaryotes, E. Rosenberg, EF DeLong, S. Lory, E. Stackebrandt, and F. Thompson, Eds. (Springer Berlin Heidelberg), 57–89.
  • Grumaz, C., Hoffmann, A., Vainshtein, Y., Kopp, M., Grumaz, S., Stevens, P., Decker, S.O., Weigand, M.A., Hofer, S., & Brenner, T. (2020). Rapid next-generation sequencing– based diagnostics of bacteremia in septic patients. The Journal of Molecular Diagnostics, 22(3), 405–418.
  • Gudding, R., Lillehaug, A., & Evensen, Ø. (2014). Fish vaccination (Vol. 614). Wiley Online Library. Gunimaladevi I, Kono T, Lapatra SE, Sakai M (2005) A loop mediated iso- thermal amplification (LAMP) method for detection of infectious hematopoi- etic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Archives of Virology 150, 899-909
  • Gunimaladevi I, Kono T, Venugopal MN, Sakai M (2004) Detection of koi herpesvirus in common carp, Cyprinus carpio L., by loop-mediated isother- mal amplification. Journal of Fish Diseases 27, 583-589
  • Gunson, R.N., Collins, T.C., & Carman, W.F. (2006). Practical experience of high throughput real time PCR in the routine diagnostic virology setting. Journal of Clinical Virology, 35(4), 355–367.
  • Haldar, S., Maharajan, A., Chatterjee, S., Hunter, S.A., Chowdhury, N., Hinenoya, A., Asakura, M., & Yamasaki, S. (2010). Identification of Vibrio harveyi as a causative bacterium for a tail rot disease of sea bream Sparus aurata from research hatchery in Malta. Microbiological Research, 165(8), 639–648.
  • Hallett, S.L., & Bartholomew, J.L. (2006). Application of a real- time PCR assay to detect and quantify the myxozoan parasite Ceratomyxa shasta in river water samples. Diseases of Aquatic Organisms, 71(2), 109–118.
  • Hanna, S.E., Connor, C.J., & Wang, H.H. (2005). Real-time polymerase chain reaction for the food microbiologist: Technologies, applications, and limitations. Journal of Food Science, 70(3), R49–R53.
  • Haras, D., & Amoros, J.P. (1994). Polymerase chain reaction, cold probes and clinical diagnosis. Sante (Montrouge, France), 4(1), 43–52.
  • Hayden, M.J., Nguyen, T.M., Waterman, A., & Chalmers, K.J. (2008). Multiplex-ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics, 9(1), 1–12.
  • Henriksson, P.J., Rico, A., Troell, M., Klinger, D.H., Buschmann, A.H., Saksida, S., Chadag, M.V., & Zhang, W. (2018). Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: A review from a systems perspective. Sustainability Science, 13(4), 1105–1120.
  • Herrero, B., Vieites, J.M., & Espiñeira, M. (2011). Detection of anisakids in fish and seafood products by real-time PCR. Food Control, 22(6), 933–939.
  • Hiney, M., Dawson, M.T., Heery, D.M., Smith, P.R., Gannon, F., & Powell, R. (1992). DNA probe for Aeromonas salmonicida. Applied and Environmental Microbiology, 58(3), 1039–1042.
  • Hommelsheim, C.M., Frantzeskakis, L., Huang, M., & Ülker, B. (2014). PCR amplification of repetitive DNA: A limitation to genome editing technologies and many other applications. Scientific Reports, 4(1), 1–13.
  • Hong, G.-E., Kim, D.-G., Bae, J.-Y., Ahn, S.-H., Bai, S. C., & Kong, I.-S. (2007). Species-specific PCR detection of the fish pathogen, Vibrio anguillarum, using the amiB gene, which encodes N-acetylmuramoyl-L-alanine amidase. FEMS Microbiology Letters, 269(2), 201–206.
  • Houpikian, P., & Raoult, D. (2002). Traditional and molecular techniques for the study of emerging bacterial diseases: One laboratory’s perspective. Emerging Infectious Diseases, 8(2), 122.
  • Hu, Y. (2018). Molecular techniques for blood and blood product screening. Advanced Techniques in Diagnostic Microbiology, 31–66.
  • Huntingford, F.A., & Kadri, S. (2014). Defining, assessing and promoting the welfare of farmed fish. Revue Scientifique et Technique (International Office of Epizootics), 33(1), 233–244.
  • Hwang, J.Y., Lee, S., Priyathilaka, T.T., Yang, H., Kwon, H., Kwon, M.G., Hwang, S.D., Kim, M.-J., & Lee, J. (2018). Phylogenetic analysis and duplex RT-PCR detection of viral hemorrhagic septicemia virus in olive flounder (Paralichthys olivaceus) from Korea. Aquaculture, 484, 242–249.
  • Inglis, V., & Aoki, T. (1996). Rapid identification of Aeromonas salmonicida subspecies salmonicida by the polymerase chain reaction. Aquaculture, 141(1–2), 13–24.
  • Isaksen, T.E., Karlsbakk, E., Repstad, O., & Nylund, A. (2012). Molecular tools for the detection and identification of Ichthyobodo spp.(Kinetoplastida), important fish parasites. Parasitology International, 61(4), 675–683.
  • Izumi, S., H. Fujii, Aranishi, F. (2005) Detection and identification of Flavobac- terium psychrophilum from gill washings and benthic diatoms by PCR-based sequencing analysis Journal of Fish Diseases 28, 559-564
  • Izumi S, Yamamoto M, Suzuki K, Shimizu A, Aranishi F (2007) Identifica- tion and detection of Pseudomonas plecoglossicida isolates with PCR pri- mers targeting the gyrB region. Journal of Fish Diseases 30, 391-397
  • Jeong, J.B., Park, K.H., Kim, H.Y., Hong, S.H., Kim, K.H., Chung, J.-K., Komisar, J.L., & Do Jeong, H. (2004). Multiplex PCR for the diagnosis of red sea bream iridoviruses isolated in Korea. Aquaculture, 235(1–4), 139–152.
  • Jiménez, A., Tibatá, V.M., Junca, H., Ariza, F., Verjan, N., & Iregui, C. (2011). Evaluating a nested-PCR assay for detecting Streptococcus agalactiae in red tilapia (Oreochromis sp.) tissue. Aquaculture, 321, 203-206.
  • Jousson, O., Pretti, C., Di Bello, D., & Cognetti-Varriale, A.M. (2005). Non-invasive detection and quantification of the parasitic ciliate Ichthyophthirius multifiliis by real-time PCR. Diseases of Aquatic Organisms, 65(3), 251–255.
  • Kadri, K. (2019). Polymerase chain reaction (PCR): Principle and applications. In Synthetic Biology-New Interdisciplinary Science. IntechOpen.
  • Kalle, E., Kubista, M., & Rensing, C. (2014). Multi-template polymerase chain reaction. Biomolecular Detection and Quantification, 2, 11–29.
  • Kamolvarin, N., Tirawatnpong, T., Rattanasiwamoke, R., Tirawatnpong, S., Panpanich, T., & Hemachudha, T. (1993). Diagnosis of rabies by polymerase chain reaction with nested primers. The Journal of infectious diseases, 167(1), 207–210.
  • Kechin, A., Borobova, V., Boyarskikh, U., Khrapov, E., Subbotin, S., & Filipenko, M. (2020). NGS-PrimerPlex: High- throughput primer design for multiplex polymerase chain reactions. PLOS Computational Biology, 16(12), e1008468.
  • Keeling, S.E., Johnston, C., Wallis, R., Brosnahan, C.L., Gudkovs, N., & McDonald, W.L. (2012). Development and validation of real-time PCR for the detection of Yersinia ruckeri. Journal of Fish Diseases, 35(2), 119–125.
  • Kelley, G.O., Adkison, M.A., Zagmutt-Vergara, F.J., Leutenegger, C.M., Bethel, J.W., Myklebust, K.A., McDowell, T.S., & Hedrick, R.P. (2006). Evaluation of quantitative real-time PCR for rapid assessments of the exposure of sentinel fish to Myxobolus cerebralis. Parasitology Research, 99(4), 328–335.
  • Kelley, G.O., Zagmutt-Vergara, F.J., Leutenegger, C.M., Myklebust, K.A., Adkison, M.A., McDowell, T.S., Marty, G.D., Kahler, A.L., Bush, A.L., & Gardner, I.A. (2004). Evaluation of five diagnostic methods for the detection and quantification of Myxobolus cerebralis. Journal of Veterinary Diagnostic Investigation, 16(3), 202–211.
  • Kermekchiev, M.B., Kirilova, L.I., Vail, E.E., & Barnes, W.M. (2009). Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic acids research, 37(5), e40. https://doi.org/10.1093/nar/gkn1055
  • Kijewska, A., Rokicki, J., Sitko, J., & Węgrzyn, G. (2002). Ascaridoidea: A simple DNA assay for identification of 11 species infecting marine and freshwater fish, mammals, and fish-eating birds. Experimental Parasitology, 101(1), 35–39.
  • Klein, D. (2002). Quantification using real-time PCR technology: Applications and limitations. Trends in Molecular Medicine, 8(6), 257–260.
  • Kociolek, L.K. (2017). Strategies for optimizing the diagnostic predictive value of Clostridium difficile molecular diagnostics. Journal of Clinical Microbiology, 55(5), 1244–1248.
  • Kokkattunivarthil, S., Krishnan, R., Kezhedath, J., & Prasad, K. P. (2018). New set of PCR primers for SYBR green-based qPCR detection of IMNV in India. Aquaculture, 495, 726– 730.
  • Komarudin, O., & Slembrouck, J. (2003). Fish health management. Technical Manual for Artificial Propagation of the Indonesian Catfish, Pangasius Djambal, 109.
  • Kralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology, 8, 108.
  • Krawczyk, B., & Kur, J. (2018). Chapter 16 - Molecular Identification and Genotyping of Staphylococci: Genus, Species, Strains, Clones, Lineages, and Interspecies Exchanges. In V. Savini (Ed.), Pet-To-Man Travelling Staphylococci (pp. 199–223). Academic Press. https://doi.org/10.1016/B978-0-12-813547-1.00016-9
  • Krishna, N.K., & Cunnion, K.M. (2012). Role of molecular diagnostics in the management of infectious disease emergencies. Medical Clinics, 96(6), 1067–1078.
  • Kulkarni, A., Caipang, C.M.A., Brinchmann, M.F., Korsnes, K., & Kiron, V. (2009). Use of loop‐mediated isothermal amplification assay for the detection of Vibrio anguillarum O2β, the causative agent of vibriosis in Atlantic cod, Gadus morhua. Journal of Rapid Methods & Automation in Microbiology, 17(4), 503-518.
  • Kumar, N.S., & Gurusubramanian, G. (2011). Random amplified polymorphic DNA (RAPD) markers and its applications. Sci. Vis, 11(3), 116–124.
  • Kumar, V., Roy, S., Barman, D., & Kumar, A. (2014). Immunoserological and molecular techniques used in fish disease diagnosis: A mini review. Int J Fish Aquat, 1(3), 111–117.
  • Kumari, N., & Thakur, S.K. (2014). Randomly amplified polymorphic DNA-a brief review. American Journal of Animal and Veterinary Sciences, 9(1), 6–13.
  • Lakshmi, B., Viswanath, B., & Sai Gopal, D.V.R. (2013). Probiotics as antiviral agents in shrimp aquaculture. Journal of Pathogens, 2013.
  • León, G., Maulén, N., Figueroa, J., Villanueva, J., Rodríguez, C., Vera, M.I., & Krauskopf, M. (1994). A PCR-based assay for the identification of the fish pathogen Renibacterium salmoninarum. FEMS Microbiology Letters, 115(2–3), 131–136.
  • Leung, T.L., & Bates, A.E. (2013). More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. Journal of Applied Ecology, 50(1), 215–222.
  • Levy, M.G., Poore, M.F., Colorni, A., Noga, E.J., Vandersea, M.W., & Litaker, R.W. (2007). A highly specific PCR assay for detecting the fish ectoparasite Amyloodinium ocellatum. Diseases of Aquatic Organisms, 73(3), 219– 226.
  • Lievens, B., Frans, I., Heusdens, C., Justé, A., Jonstrup, S.P., Lieffrig, F., & Willems, K. A. (2011a). Rapid detection and identification of viral and bacterial fish pathogens using a DNA array-based multiplex assay. Journal of Fish Diseases, 34(11), 861–875.
  • Lievens, B., Frans, I., Heusdens, C., Justé, A., Jonstrup, S.P., Lieffrig, F., & Willems, K. A. (2011b). Rapid detection and identification of viral and bacterial fish pathogens using a DNA array-based multiplex assay. Journal of Fish Diseases, 34(11), 861–875.
  • Lindahl, J.F., & Grace, D. (2015). The consequences of human actions on risks for infectious diseases: A review. Infection Ecology & Epidemiology, 5(1), 30048.
  • Liu, L., Ge, M., Zheng, X., Tao, Z., Zhou, S., & Wang, G. (2016). Investigation of Vibrio alginolyticus, V. harveyi, and V. parahaemolyticus in large yellow croaker, Pseudosciaena crocea (Richardson) reared in Xiangshan Bay, China. Aquaculture Reports, 3, 220–224.
  • Llop, P., Bonaterra, A., Peñalver, J., & López, M.M. (2000). Development of a highly sensitive nested-PCR procedure using a single closed tube for detection of Erwinia amylovora in asymptomatic plant material. Applied and environmental microbiology, 66(5), 2071–2078.
  • Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Advances in Drug Safety, 5(6), 229–241.
  • Logan, J., Logan, J.M., Edwards, K.J., & Saunders, N.A. (2009). Real-time PCR: Current technology and applications. Horizon Scientific Press.
  • López, J.R., Hamman-Khalifa, A.M., Navas, J.I., & de la Herran, R. (2011). Characterization of ISR region and development of a PCR assay for rapid detection of the fish pathogen Tenacibaculum soleae. FEMS Microbiology Letters, 324(2), 181–188.
  • Lorenz, T.C. (2012). Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. JoVE (Journal of Visualized Experiments), 63, e3998.
  • Lu, R.-M., Hwang, Y.-C., Liu, I.-J., Lee, C.-C., Tsai, H.-Z., Li, H.-J., & Wu, H.-C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1), 1–30.
  • Lynch, M., & Milligan, B.G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3(2), 91–99.
  • Mackay, I.M. (2007). Real-time PCR in microbiology. Caister Academic Press Norfolk, UK.
  • Mackay, I.M., Arden, K.E., & Nitsche, A. (2002). Real-time PCR in virology. Nucleic Acids Research, 30(6), 1292–1305.
  • Maddocks, S., & Jenkins, R. (2017). Chapter 4–Quantitative PCR: Things to consider. Understanding PCR. Academic, Boston, 45–52.
  • Maddocks, Sarah, & Jenkins, R. (2017). Chapter 2—Designing and Ordering Your Polymerase Chain Reaction Primers. In Sarah Maddocks & R. Jenkins (Eds.), Understanding PCR (pp. 11–30). Academic Press. https://doi.org/10.1016/B978-0-12-802683-0.00002-2
  • Magnadottir, B. (2010). Immunological control of fish diseases. Marine Biotechnology, 12(4), 361–379.
  • Mahoney, J.B., & Chernesky, M.A. (1995). Multiplex polymerase chain reaction. Molecular Methods for Viral Detection. Academic Press, Inc., New York, NY, 219–237.
  • Manage, P. M. (2018). Heavy Use of Antibiotics in Aquaculture; Emerging Human and Animal Health Problems–A review.
  • Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 23(4), 795.
  • Marancik, D.P., & Wiens, G.D. (2013). A real-time polymerase chain reaction assay for identification and quantification of Flavobacterium psychrophilum and application to disease resistance studies in selectively bred rainbow trout Oncorhynchus mykiss. FEMS Microbiology Letters, 339(2), 122–129.
  • Markoulatos, P., Siafakas, N., & Moncany, M. (2002). Multiplex polymerase chain reaction: A practical approach. Journal of Clinical Laboratory Analysis, 16(1), 47–51.
  • Martín, M.T., Cuesta, M.J., & Martín, L. (2014). Development of SCAR primers for PCR assay to detect Diplodia seriata. International Scholarly Research Notices, 2014.
  • Marton, S., & Eszterbauer, E. (2012). The susceptibility of diverse species of cultured oligochaetes to the fish parasite Myxobolus pseudodispar Gorbunova (Myxozoa). Journal of Fish Diseases, 35(4), 303–314.
  • Marwal, A., & Gaur, R.K. (2020). Chapter 18 - Molecular markers: Tool for genetic analysis. In A. S. Verma & A. Singh (Eds.), Animal Biotechnology (Second Edition) (pp. 353–372). Academic Press. https://doi.org/10.1016/B978-0-12-811710-1.00016-1
  • Mauger, F., & Deleuze, J.-F. (2019). Chapter 3—Technological advances in studying epigenetics biomarkers of prognostic potential for clinical research. In S. Sharma (Ed.), Prognostic Epigenetics (Vol. 15, pp. 45–83). Academic Press. https://doi.org/10.1016/B978-0-12- 814259-2.00003-0
  • Maurer, F.P., Christner, M., Hentschke, M., & Rohde, H. (2017). Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: Implications for patient care and antimicrobial stewardship programs. Infectious Disease Reports, 9(1), 18–27.
  • McPhearson, R.M., DePaola, A., Zywno, S.R., Motes Jr, M.L., & Guarino, A.M. (1991). Antibiotic resistance in Gram- negative bacteria from cultured catfish and aquaculture ponds. Aquaculture, 99(3–4), 203–211.
  • Mendonça, H.L., Arkush, K.D. (2004) Development of PCR- based methods for detection of Sphaerothecum destruens in fish tissues. Diseases of Aquatic Or- ganisms 61, 187-197
  • Meyer, K., Bergmann, S.M., van der Marel, M., & Steinhagen, D. (2012). Detection of Koi herpesvirus: Impact of extraction method, primer set and DNA polymerase on the sensitivity of polymerase chain reaction examinations. Aquaculture Research, 43(6), 835–842.
  • Micheli, M.R., & Bova, R. (2013). Fingerprinting methods based on arbitrarily primed PCR. Springer Science & Business Media.
  • Mittal, B., Chaturvedi, P., & Tulsyan, S. (2013). Restriction Fragment Length Polymorphism. In S. Maloy & K. Hughes (Eds.), Brenner’s Encyclopedia of Genetics (Second Edition) (pp. 190–193). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.01314-0
  • Miyata, M., Aoki, T., Inglis, V., Yoshida, T., & Endo, M. (1995). RAPD analysis of Aeromonas salmonicida and Aeromonas hydrophila. Journal of Applied Bacteriology, 79(2), 181–185.
  • Morganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Viale, G., Trapani, D., Duso, B. A., & Curigliano, G. (2020). Role of Next-Generation Sequencing Technologies in Personalized Medicine. In P5 eHealth: An Agenda for the Health Technologies of the Future (pp. 125–154). Springer, Cham.
  • Morshed, M.G., Lee, M.-K., Jorgensen, D., & Isaac-Renton, J.L. (2007). Molecular methods used in clinical laboratory: Prospects and pitfalls. FEMS Immunology & Medical Microbiology, 49(2), 184–191.
  • Mougin, J., Roquigny, R., Travers, M.-A., Grard, T., Bonnin- Jusserand, M., & Le Bris, C. (2020). Development of a mreB-targeted real-time PCR method for the quantitative detection of Vibrio harveyi in seawater and biofilm from aquaculture systems. Aquaculture, 525, 735337.
  • Muldrew, K.L. (2009). Molecular diagnostics of infectious diseases. Current Opinion in Pediatrics, 21(1), 102–111.
  • Mullis, K., Faloona, F., Scharf, S., Saiki, R.K., Horn, G.T., & Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, 51, 263–273.
  • Muroga, K. (2001). Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture, 202(1–2), 23–44.
  • Nandani, K., & Thakur, S.K. (2014). Randomly amplified polymorphic DNA-a brief review. American Journal of Animal and Veterinary Sciences, 9(1), 6–13.
  • Narayana, P.S., Varalakshmi, D., Pullaiah, T., & Rao, K.S. (2018). Research methodology in Zoology. Scientific Publishers.
  • Nazir, R., Rehman, S., Nisa, M., & ali Baba, U. (2019). Exploring bacterial diversity: From cell to sequence. In Freshwater Microbiology (pp. 263–306). Elsevier.
  • Neshati, H., Sheybani, F., Naderi, H., Sarvghad, M., Soltani, A.K., Efterkharpoor, E., & Nooghabi, M.J. (2018, November 13). Diagnostic Errors in Tuberculous Patients: A Multicenter Study from a Developing Country [Research Article]. Journal of Environmental and Public Health; Hindawi. https://doi.org/10.1155/2018/1975931
  • Nielsen, M.E., Høi, L., Schmidt, A.S., Qian, D., Shimada, T., Shen, J.Y., & Larsen, J.L. (2001). Is Aeromonas hydrophila the dominant motile Aeromonas species that causes disease outbreaks in aquaculture production in the Zhejiang Province of China? Diseases of Aquatic Organisms, 46(1), 23–29.
  • Nikiforova, M.N., LaFramboise, W.A., & Nikiforov, Y.E. (2015). Amplification-Based Methods. In Clinical genomics (pp. 57–67). Elsevier.
  • Nisaa, K., Sukenda, Z.M., Nuryati, S., & Lusiastuti, A.M. (2017). Fry tilapia Oreochromis niloticus antibody improvement against Streptococcus agalactiae through broodstock vaccination. Pakistan Journal of Biotechnology, 14, 9–16.
  • Noga, E.J. (2010). Fish disease: Diagnosis and treatment. John Wiley & Sons.
  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop- mediated isothermal amplification of DNA. Nucleic acids research, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63
  • Nuchprayoon, S., Junpee, A., & Poovorawan, Y. (2007). Random amplified polymorphic DNA (RAPD) for differentiation between Thai and Myanmar strains of Wuchereria bancrofti. Filaria Journal, 6(1), 1–8.
  • Nygren, M. (2000). Molecular diagnostics of infectious diseases [PhD Thesis]. Bioteknologi.
  • Opiyo, M.A., Marijani, E., Muendo, P., Odede, R., Leschen, W., & Charo-Karisa, H. (2018). A review of aquaculture production and health management practices of farmed fish in Kenya. International Journal of Veterinary Science and Medicine, 6(2), 141–148.
  • Orakpoghenor, O., & Markus, T. (2020). Diagnostic Techniques in Molecular Biology -An Overview. 1, 1008.
  • Osorio, C.R., Collins, M.D., Toranzo, A.E., Barja, J.L., & Romalde, J.L. (1999). 16S rRNA gene sequence analysis of Photobacterium damselae and nested PCR method for rapid detection of the causative agent of fish pasteurellosis. Applied and environmental microbiology, 65(7), 2942–2946.
  • Osorio, C.R., Toranzo, A.E., Romalde, J.L., & Barja, J.L. (2000) Multiplex PCR assay for urea and 16S rRNA genes clearly discriminates between both subspecies of Photobacterium damselae. Diseases of Aquatic Organisms 40, 177-183
  • Pallas, V., Sanchez-Navarro, J., Varga, A., Aparicio, F., & James, D. (2009). Multiplex polymerase chain reaction (PCR) and real-time multiplex PCR for the simultaneous detection of plant viruses. In Plant Pathology (pp. 193– 208). Springer.
  • Pang, L., Zhang, X.-H., Zhong, Y., Chen, J., Li, Y., & Austin, B. (2006). Identification of Vibrio harveyi using PCR amplification of the toxR gene. Letters in Applied Microbiology, 43(3), 249–255.
  • Paoletti, M., Mattiucci, S., Colantoni, A., Levsen, A., Gay, M., & Nascetti, G. (2018). Species-specific Real Time-PCR primers/probe systems to identify fish parasites of the genera Anisakis, Pseudoterranova and Hysterothylacium (Nematoda: Ascaridoidea). Fisheries Research, 202, 38– 48.
  • Park, M., Won, J., Choi, B.Y., & Lee, C.J. (2020). Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real- time PCR. Experimental & Molecular Medicine, 52(6), 963–977.
  • Patrinos, G.P., Danielson, P.B., & Ansorge, W.J. (2017). Chapter 1 - Molecular Diagnostics: Past, Present, and Future. In George P. Patrinos (Ed.), Molecular Diagnostics (Third Edition) (pp. 1–11). Academic Press. https://doi.org/10.1016/B978-0-12-802971-8.00001-8
  • Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928.
  • Plumb, J.A., & Hanson, L.A. (2010). Health maintenance and principal microbial diseases of cultured fishes. John Wiley & Sons.
  • Pontes, T., D’Amelio, S., Costa, G., & Paggi, L. (2005). Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species. Journal of Parasitology, 91(6), 1430–1434
  • Preena, P.G., Swaminathan, T.R., Kumar, V.J.R., & Singh, I.S.B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 1–21.
  • Premkrishnan, B.V., & Arunachalam, V. (2012). In silico RAPD priming sites in expressed sequences and iSCAR markers for oil palm. Comparative and Functional Genomics, 2012.
  • Pridgeon, J.W., & Klesius, P.H. (2012). Major bacterial diseases in aquaculture and their vaccine development. Anim. Sci. Rev, 7, 1–16.
  • Procop, G.W. (2007). Molecular diagnostics for the detection and characterization of microbial pathogens. Clinical Infectious Diseases, 45(Supplement_2), S99–S111.
  • Radich, J. (2000). Multiplex Polymerase Chain Reaction. In R. Rapley (Ed.), The Nucleic Acid Protocols Handbook (pp. 619–623). Humana Press. https://doi.org/10.1385/1- 59259-038-1:619
  • Rahman, M.K. (2013). Impact of aquaculture drugs and chemicals on aquatic ecology and productivity. Bangladesh Fisheries Research Institute, Ministry of Fisheries and Livestock.
  • Rao, M.B., Tanksale, A.M., Ghatge, M.S., & Deshpande, V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597–635.
  • Ravelo, C., Magarinos, B., López-Romalde, S., Toranzo, A. E., & Romalde, J.L. (2003). Molecular fingerprinting of fish- pathogenic Lactococcus garvieae strains by random amplified polymorphic DNA analysis. Journal of Clinical Microbiology, 41(2), 751–756.
  • Rehman, S., Gora, A.H., Ahmad, I., & Rasool, S.I. (2017). Stress in aquaculture hatcheries: Source, impact and mitigation. International Journal of Current Microbiology and Applied Sciences, 6, 3030–3045.
  • Rhoads, D.D., Wolcott, R.D., Sun, Y., & Dowd, S.E. (2012). Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds. International Journal of Molecular Sciences, 13(3), 2535–2550. https://doi.org/10.3390/ijms13032535
  • Rimstad, E., Krona, R., Hornes, E., Olsvik, Ø., & Hyllseth, B. (1990). Detection of infectious pancreatic necrosis virus (IPNV) RNA by hybridization with an oligonucleotide DNA probe. Veterinary Microbiology, 23(1), 211–219. https://doi.org/10.1016/0378-1135(90)90151-K
  • Rocco, L., Valentino, I.V., Scapigliati, G., & Stingo, V. (2014). RAPD-PCR analysis for molecular characterization and genotoxic studies of a new marine fish cell line derived from Dicentrarchus labrax. Cytotechnology, 66(3), 383– 393.
  • Rodger, H.D. (2016). Fish disease causing economic impact in global aquaculture. In Fish vaccines (pp. 1–34). Springer.
  • Rokicka, M., Lumme, J., & Ziętara, M.S. (2007). Identification of Gyrodactylus ectoparasites in Polish salmonid farms by PCR-RFLP of the nuclear ITS segment of ribosomal DNA (Monogenea, Gyrodactylidae). Acta Parasitologica, 52(3), 185–195.
  • Rollinson, D., & Hay, S.I. (2012). Advances in parasitology (Vol. 79). Academic Press.
  • Rychlik, W., Spencer, W.J., & Rhoads, R.E. (1990). Optimization of the annealing temperature for DNA amplification in vitro; Nucleic Acids Research, 18(21), 6409–6412. https://doi.org/10.1093/nar/18.21.6409
  • Sadler, J., & Goodwin, A. (2007). Disease prevention on fish farms. Southern Regional Aquaculture Center.
  • Sahoo, P.K., Mohanty, J., Garnayak, S.K., Mohanty, B.R., Kar, B., Jena, J., & Prasanth, H. (2013). Genetic diversity and species identification of Argulus parasites collected from major aquaculture regions of India using RAPD-PCR. Aquaculture Research, 44(2), 220–230.
  • Sambrook, J. (2001). Molecular cloning: A laboratory manual/Joseph Sambrook, David W. Russell. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135–143.
  • Sarker, J., & Faruk, M.A.R. (2016). Experimental infection of Aeromonas hydrophila in pangasius. Progressive Agriculture, 27(3), 392–399.
  • Sarowar, M.N., Hossain, M.J., Nasrin, T., Naznin, T., Hossain, Z., & Rahman, M.M. (2019). Molecular identification of oomycete species affecting aquaculture in Bangladesh. Aquaculture and Fisheries, 4(3), 105–113.
  • Savan R, Igarashi A, Matsuoka S, Sakai M (2004) Sensitive and rapid detection of edwardsiellosis in fish by a loop- mediated isothermal amplification method. Applied and Environmental Microbiology 70, 621-624
  • Seo, J.S., Jeon, E.J., Kim, M.S., Woo, S.H., Do Kim, J., Jung, S.H., Park, M.A., Jee, B.Y., Kim, J.W., & Kim, Y.-C. (2012). Molecular identification and real-time quantitative PCR (qPCR) for rapid detection of Thelohanellus kitauei, a myxozoan parasite causing intestinal giant cystic disease in the Israel carp. The Korean Journal of Parasitology, 50(2), 103.
  • Serrano, P.H. (2005). Responsible use of antibiotics in aquaculture (Vol. 469). Food & Agriculture Org.
  • Serwecińska, L. (2020). Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water, 12(12), 3313.
  • Shaheen Shahzad, M.A., Sikandar, S., & Afzal, I. (2020). Polymerase Chain Reaction. Genetic Engineering: A Glimpse of Techniques and Applications, 13.
  • Sharma, M., Shrivastav, A.B., Sahni, Y.P., & Pandey, G. (2012). Overviews of the treatment and control of common fish diseases.
  • Shekhawat, S.S., Gaurav, A., Joseph, B., Kumar, H., & Kumar, N. (2019). Random amplified polymorphic DNA-based molecular heterogeneity analysis of Salmonella enterica isolates from foods of animal origin. Veterinary World, 12(1), 146.
  • Shen, C.-H. (2019a). Chapter 9—Amplification of Nucleic Acids. In C.-H. Shen (Ed.), Diagnostic Molecular Biology (pp. 215–247). Academic Press. https://doi.org/10.1016/B978-0-12-802823-0.00009-2
  • Shen, C.-H. (2019b). Chapter 15—Molecular Diagnosis of Infectious Diseases. In C.-H. Shen (Ed.), Diagnostic Molecular Biology (pp. 387–411). Academic Press. https://doi.org/10.1016/B978-0-12-802823-0.00015-8
  • Shivappa RB, Savan R, Kono T, Sakai M, Emmenegger E, Kurath G, Le- vine JF (2008) Detection of spring viraemia of carp virus (SVCV) by loop- mediated isothermal amplification (LAMP) in koi carp, Cyprinus carpio L. Journal of Fish Diseases 31, 249-258
  • Siddiqui, M.Z. (2010). Monoclonal antibodies as diagnostics; an appraisal. Indian Journal of Pharmaceutical Sciences, 72(1), 12.
  • Sint, D., Raso, L., & Traugott, M. (2012). Advances in multiplex PCR: Balancing primer efficiencies and improving detection success. Methods in Ecology and Evolution, 3(5), 898–905.
  • Skirpstunas RT, Hergert JM, Baldwin TJ (2006) Detection of early stages of Myxobolus cerebralis in fin clips from rainbow trout (Oncorhynchus mykiss). Journal of Veterinary Diagnostic Investigation 18, 274-277
  • Smith, P. (2008). Antimicrobial resistance in aquaculture. Revue Scientifique et Technique (International Office of Epizootics), 27(1), 243–264.
  • Soliman H, El-Matbouli M (2006) Reverse transcription loop- mediated iso- thermal amplification (RT-LAMP) for rapid detection of viral hemorrhagic septicaemia virus (VHS). Veterinary Microbiology 114, 205-213
  • Soto, E., Bowles, K., Fernandez, D., & Hawke, J.P. (2010). Development of a real-time PCR assay for identification and quantification of the fish pathogen Francisella noatunensis subsp. Orientalis. Diseases of Aquatic Organisms, 89(3), 199–207.
  • Staahlberg, A., Zoric, N., AAman, P., & Kubista, M. (2005). Quantitative real-time PCR for cancer detection: The lymphoma case. Expert Review of Molecular Diagnostics, 5(2), 221–230.
  • Tavares-Dias, M., & Martins, M.L. (2017). An overall estimation of losses caused by diseases in the Brazilian fish farms. Journal of Parasitic Diseases, 41(4), 913–918. https://doi.org/10.1007/s12639-017-0938-y
  • Thornber, K., Verner-Jeffreys, D., Hinchliffe, S., Rahman, M.M., Bass, D., & Tyler, C.R. (2019). Evaluating antimicrobial resistance in the global shrimp industry. Rev Aquacult (in press).
  • Thornber, K., Verner-Jeffreys, D., Hinchliffe, S., Rahman, M.M., Bass, D., & Tyler, C.R. (2020). Evaluating antimicrobial resistance in the global shrimp industry. Reviews in Aquaculture, 12(2), 966–986.
  • Tom, M., Chen, N., Segev, M., Herut, B., & Rinkevich, B. (2004). Quantifying fish metallothionein transcript by real time PCR for its utilization as an environmental biomarker. Marine Pollution Bulletin, 48(7–8), 705–710.
  • Tomar, R.S. (2010). Molecular markers and plant biotechnology. New India Publishing.
  • Torres, C., Vitalis, E.A., Baker, B.R., Gardner, S.N., Torres, M.W., & Dzenitis, J.M. (2011). LAVA: an open-source approach to designing LAMP (loop-mediated isothermal amplification) DNA signatures. BMC bioinformatics, 12, 240. https://doi.org/10.1186/1471-2105-12-240
  • Tripathy, S., Kumar, N., Mohanty, S., Samanta, M., Mandal, R.N., & Maiti, N.K. (2007). Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiological Research, 162(4), 391– 396.
  • Tsai, M.A., Wang, P.C., Yoshida, T., Liaw, L.L., & Chen, S.C. (2013). Development of a sensitive and specific LAMP PCR assay for detection of fish pathogen Lactococcus garvieae. Diseases of aquatic organisms, 102(3), 225– 235. https://doi.org/10.3354/dao02546
  • Tymoczko, J.L., Berg, J.M., & Stryer, L. (2011). Biochemistry: A short course. Macmillan. Urdaci, M.C., Chakroun, C., Faure, D., & Bernardet, J.-F. (1998). Development of a polymerase chain reaction assay for identification and detection of the fish pathogen Flavobacterium psychrophilum. Research in Microbiology, 149(7), 519–530.
  • Uzonur, I., Akdeniz, G., Katmer, Z., & Ersoy, S.K. (2013). RAPD- PCR and real-time PCR HRM based genetic variation evaluations of Urtica dioica parts, ecotypes and evaluations of morphotypes in Turkey. African Journal of Traditional, Complementary and Alternative Medicines, 10(2), 232–245.
  • van Pelt-Verkuil, E., Van Belkum, A., & Hays, J.P. (2008). Principles and technical aspects of PCR amplification. Springer Science & Business Media.
  • van Pelt-Verkuil, E., van Belkum, A., & Hays, J.P. (Eds.). (2008). Analysis of PCR Amplification Products. In Principles and Technical Aspects of PCR Amplification (pp. 141–182). Springer Netherlands. https://doi.org/10.1007/978-1- 4020-6241-4_9
  • Váradi, L., Luo, J.L., Hibbs, D.E., Perry, J.D., Anderson, R.J., Orenga, S., & Groundwater, P.W. (2017). Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chemical Society Reviews, 46(16), 4818–4832.
  • Wages, J.M. (2005). POLYMERASE CHAIN REACTION. In P. Worsfold, A. Townshend, & C. Poole (Eds.), Encyclopedia of Analytical Science (Second Edition) (pp. 243–250). Elsevier. https://doi.org/10.1016/B0-12-369397- 7/00475-1
  • Wakabayashi, H., Yoshida, T., Nomura, T., Nakai, T., & Takano, T. (2016). Diseases caused by bacterial pathogens in inland water. Fish Diseases, 122–189.
  • Watts, J.E., Schreier, H.J., Lanska, L., & Hale, M.S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15(6), 158.
  • Wiklund T, Madsen L, Bruun MS, Dalsgaard I (2000) Detection of Flavo- bacterium psychrophilum from fish tissue and water samples by PCR ampli- fication. Journal of Applied Microbiology 88, 299-307
  • Williams, K., Blake, S., Sweeney, A., Singer, J.T., & Nicholson, B.L. (1999). Multiplex reverse transcriptase PCR assay for simultaneous detection of three fish viruses. Journal of Clinical Microbiology, 37(12), 4139–4141.
  • Witteveldt, J. (2006). On the vaccination of shrimp against white spot syndrome virus.
  • Wolf, K. (2019). Fish viruses and fish viral diseases. Cornell University Press.
  • Wong, M.L., & Medrano, J.F. (2005). Real-time PCR for mRNA quantitation. BioTechniques, 39(1), 75–85. https://doi.org/10.2144/05391RV01
  • Yamamoto, Y. (2002). PCR in Diagnosis of Infection: Detection of Bacteria in Cerebrospinal Fluids. Clinical and Diagnostic Laboratory Immunology, 9(3), 508–514. https://doi.org/10.1128/CDLI.9.3.508-514.2002
  • Yang, S., & Rothman, R.E. (2004). PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. The Lancet. Infectious Diseases, 4(6), 337–348. https://doi.org/10.1016/S1473-3099(04)01044-8
  • Yeh, H.-Y., Shoemaker, C.A., & Klesius, P.H. (2006). Sensitive and rapid detection of Flavobacterium columnare in channel catfish Ictalurus punctatus by a loop-mediated isothermal amplification method. Journal of Applied Microbiology, 100(5), 919–925.
  • Zdzalik, M., Kalinska, M., Wysocka, M., Stec-Niemczyk, J., Cichon, P., Stach, N., Gruba, N., Stennicke, H.R., Jabaiah, A., & Markiewicz, M. (2013). Biochemical and structural characterization of SplD protease from Staphylococcus aureus. PLoS One, 8(10), e76812.
  • Zebardast, N., Haghighi, A., Yeganeh, F., Tabaei, S.J.S., Gharavi, M.J., Fallahi, S., Lasjerdi, Z., Salehi, N., Taghipour, N., & Kohansal, C. (2014). Application of multiplex PCR for detection and differentiation of Entamoeba histolytica, Entamoeba dispar and Entamoeba moshkovskii. Iranian Journal of Parasitology, 9(4), 466.
  • Zhou, Y. Xiao, J. Ma, X. Wang, Q. & Zhang, Y. (2018). An effective established biosensor of bifunctional probes- labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae. Applied microbiology and biotechnology, 102(12), 5299–5308. https://doi.org/10.1007/s00253-018-9016-3
  • Zhu, X. Gasser, R.B. Podolska, M. & Chilton, N.B. (1998). Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. International Journal for Parasitology, 28(12), 1911– 1921.
  • Zia, Q., Alawami, M., Mokhtar, N.F.K., Nhari, R.M.H.R. & Hanish, I. (2020). Current analytical methods for porcine identification in meat and meat products. Food Chemistry, 324, 126664.